MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difcom Unicode version

Theorem difcom 3538
Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.)
Assertion
Ref Expression
difcom  |-  ( ( A  \  B ) 
C_  C  <->  ( A  \  C )  C_  B
)

Proof of Theorem difcom
StepHypRef Expression
1 uncom 3319 . . 3  |-  ( B  u.  C )  =  ( C  u.  B
)
21sseq2i 3203 . 2  |-  ( A 
C_  ( B  u.  C )  <->  A  C_  ( C  u.  B )
)
3 ssundif 3537 . 2  |-  ( A 
C_  ( B  u.  C )  <->  ( A  \  B )  C_  C
)
4 ssundif 3537 . 2  |-  ( A 
C_  ( C  u.  B )  <->  ( A  \  C )  C_  B
)
52, 3, 43bitr3i 266 1  |-  ( ( A  \  B ) 
C_  C  <->  ( A  \  C )  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \ cdif 3149    u. cun 3150    C_ wss 3152
This theorem is referenced by:  pssdifcom1  3539  pssdifcom2  3540  isreg2  17105  conss1  27647
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator