MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdifdir Unicode version

Theorem difdifdir 3541
Description: Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
difdifdir  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  ( B  \  C ) )

Proof of Theorem difdifdir
StepHypRef Expression
1 dif32 3431 . . . . 5  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)
2 invdif 3410 . . . . 5  |-  ( ( A  \  C )  i^i  ( _V  \  B ) )  =  ( ( A  \  C )  \  B
)
31, 2eqtr4i 2306 . . . 4  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( _V  \  B ) )
4 un0 3479 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( A  \  C
)  i^i  ( _V  \  B ) )
53, 4eqtr4i 2306 . . 3  |-  ( ( A  \  B ) 
\  C )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
6 indi 3415 . . . 4  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (
( A  \  C
)  i^i  C )
)
7 disjdif 3526 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  (/)
8 incom 3361 . . . . . 6  |-  ( C  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  C
)
97, 8eqtr3i 2305 . . . . 5  |-  (/)  =  ( ( A  \  C
)  i^i  C )
109uneq2i 3326 . . . 4  |-  ( ( ( A  \  C
)  i^i  ( _V  \  B ) )  u.  (/) )  =  (
( ( A  \  C )  i^i  ( _V  \  B ) )  u.  ( ( A 
\  C )  i^i 
C ) )
116, 10eqtr4i 2306 . . 3  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( ( A 
\  C )  i^i  ( _V  \  B
) )  u.  (/) )
125, 11eqtr4i 2306 . 2  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  i^i  (
( _V  \  B
)  u.  C ) )
13 ddif 3308 . . . . 5  |-  ( _V 
\  ( _V  \  C ) )  =  C
1413uneq2i 3326 . . . 4  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  =  ( ( _V  \  B )  u.  C
)
15 indm 3427 . . . . 5  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( ( _V  \  B
)  u.  ( _V 
\  ( _V  \  C ) ) )
16 invdif 3410 . . . . . 6  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
1716difeq2i 3291 . . . . 5  |-  ( _V 
\  ( B  i^i  ( _V  \  C ) ) )  =  ( _V  \  ( B 
\  C ) )
1815, 17eqtr3i 2305 . . . 4  |-  ( ( _V  \  B )  u.  ( _V  \ 
( _V  \  C
) ) )  =  ( _V  \  ( B  \  C ) )
1914, 18eqtr3i 2305 . . 3  |-  ( ( _V  \  B )  u.  C )  =  ( _V  \  ( B  \  C ) )
2019ineq2i 3367 . 2  |-  ( ( A  \  C )  i^i  ( ( _V 
\  B )  u.  C ) )  =  ( ( A  \  C )  i^i  ( _V  \  ( B  \  C ) ) )
21 invdif 3410 . 2  |-  ( ( A  \  C )  i^i  ( _V  \ 
( B  \  C
) ) )  =  ( ( A  \  C )  \  ( B  \  C ) )
2212, 20, 213eqtri 2307 1  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151   (/)c0 3455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456
  Copyright terms: Public domain W3C validator