Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difeq12i Structured version   Unicode version

Theorem difeq12i 3465
 Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1
difeq12i.2
Assertion
Ref Expression
difeq12i

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3
21difeq1i 3463 . 2
3 difeq12i.2 . . 3
43difeq2i 3464 . 2
52, 4eqtri 2458 1
 Colors of variables: wff set class Syntax hints:   wceq 1653   cdif 3319 This theorem is referenced by:  difrab  3617  uniioombllem4  19480  zrdivrng  22022  gtiso  24090  preddif  25468  isdrngo1  26574  pwfi2f1o  27239 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rab 2716  df-dif 3325
 Copyright terms: Public domain W3C validator