MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin2 Unicode version

Theorem difin2 3430
Description: Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i  A
) )

Proof of Theorem difin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel 3174 . . . . 5  |-  ( A 
C_  C  ->  (
x  e.  A  ->  x  e.  C )
)
21pm4.71d 615 . . . 4  |-  ( A 
C_  C  ->  (
x  e.  A  <->  ( x  e.  A  /\  x  e.  C ) ) )
32anbi1d 685 . . 3  |-  ( A 
C_  C  ->  (
( x  e.  A  /\  -.  x  e.  B
)  <->  ( ( x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B )
) )
4 eldif 3162 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 elin 3358 . . . 4  |-  ( x  e.  ( ( C 
\  B )  i^i 
A )  <->  ( x  e.  ( C  \  B
)  /\  x  e.  A ) )
6 eldif 3162 . . . . 5  |-  ( x  e.  ( C  \  B )  <->  ( x  e.  C  /\  -.  x  e.  B ) )
76anbi1i 676 . . . 4  |-  ( ( x  e.  ( C 
\  B )  /\  x  e.  A )  <->  ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A ) )
8 ancom 437 . . . . 5  |-  ( ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  B
) ) )
9 anass 630 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  C
)  /\  -.  x  e.  B )  <->  ( x  e.  A  /\  (
x  e.  C  /\  -.  x  e.  B
) ) )
108, 9bitr4i 243 . . . 4  |-  ( ( ( x  e.  C  /\  -.  x  e.  B
)  /\  x  e.  A )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
115, 7, 103bitri 262 . . 3  |-  ( x  e.  ( ( C 
\  B )  i^i 
A )  <->  ( (
x  e.  A  /\  x  e.  C )  /\  -.  x  e.  B
) )
123, 4, 113bitr4g 279 . 2  |-  ( A 
C_  C  ->  (
x  e.  ( A 
\  B )  <->  x  e.  ( ( C  \  B )  i^i  A
) ) )
1312eqrdv 2281 1  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( C  \  B )  i^i  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    \ cdif 3149    i^i cin 3151    C_ wss 3152
This theorem is referenced by:  issubdrg  15570  restcld  16903  limcnlp  19228  ballotlemfp1  23050  difelsiga  23494  difin2OLD  26361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator