MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difopab Unicode version

Theorem difopab 4946
Description: The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
difopab  |-  ( {
<. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem difopab
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4941 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 reldif 4934 . . 3  |-  ( Rel 
{ <. x ,  y
>.  |  ph }  ->  Rel  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } ) )
31, 2ax-mp 8 . 2  |-  Rel  ( { <. x ,  y
>.  |  ph }  \  { <. x ,  y
>.  |  ps } )
4 relopab 4941 . 2  |-  Rel  { <. x ,  y >.  |  ( ph  /\  -.  ps ) }
5 sbcan 3146 . . . 4  |-  ( [. z  /  x ]. ( [. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps )  <->  ( [. z  /  x ]. [. w  /  y ]. ph  /\  [. z  /  x ]. [. w  /  y ].  -.  ps ) )
6 sbcan 3146 . . . . 5  |-  ( [. w  /  y ]. ( ph  /\  -.  ps )  <->  (
[. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps ) )
76sbcbii 3159 . . . 4  |-  ( [. z  /  x ]. [. w  /  y ]. ( ph  /\  -.  ps )  <->  [. z  /  x ]. ( [. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps ) )
8 opelopabsb 4406 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. z  /  x ]. [. w  / 
y ]. ph )
9 vex 2902 . . . . . . 7  |-  z  e. 
_V
10 sbcng 3144 . . . . . . 7  |-  ( z  e.  _V  ->  ( [. z  /  x ].  -.  [. w  / 
y ]. ps  <->  -.  [. z  /  x ]. [. w  /  y ]. ps ) )
119, 10ax-mp 8 . . . . . 6  |-  ( [. z  /  x ].  -.  [. w  /  y ]. ps 
<->  -.  [. z  /  x ]. [. w  / 
y ]. ps )
12 vex 2902 . . . . . . . 8  |-  w  e. 
_V
13 sbcng 3144 . . . . . . . 8  |-  ( w  e.  _V  ->  ( [. w  /  y ].  -.  ps  <->  -.  [. w  /  y ]. ps ) )
1412, 13ax-mp 8 . . . . . . 7  |-  ( [. w  /  y ].  -.  ps 
<->  -.  [. w  / 
y ]. ps )
1514sbcbii 3159 . . . . . 6  |-  ( [. z  /  x ]. [. w  /  y ].  -.  ps 
<-> 
[. z  /  x ].  -.  [. w  / 
y ]. ps )
16 opelopabsb 4406 . . . . . . 7  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [. z  /  x ]. [. w  / 
y ]. ps )
1716notbii 288 . . . . . 6  |-  ( -. 
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  -.  [. z  /  x ]. [. w  /  y ]. ps )
1811, 15, 173bitr4ri 270 . . . . 5  |-  ( -. 
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [. z  /  x ]. [. w  / 
y ].  -.  ps )
198, 18anbi12i 679 . . . 4  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  -.  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } )  <->  ( [. z  /  x ]. [. w  /  y ]. ph  /\  [. z  /  x ]. [. w  /  y ].  -.  ps ) )
205, 7, 193bitr4ri 270 . . 3  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  -.  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } )  <->  [. z  /  x ]. [. w  / 
y ]. ( ph  /\  -.  ps ) )
21 eldif 3273 . . 3  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  <->  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  /\  -.  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } ) )
22 opelopabsb 4406 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }  <->  [. z  /  x ]. [. w  / 
y ]. ( ph  /\  -.  ps ) )
2320, 21, 223bitr4i 269 . 2  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  <->  <. z ,  w >.  e.  { <. x ,  y >.  |  (
ph  /\  -.  ps ) } )
243, 4, 23eqrelriiv 4910 1  |-  ( {
<. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899   [.wsbc 3104    \ cdif 3260   <.cop 3760   {copab 4206   Rel wrel 4823
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-opab 4208  df-xp 4824  df-rel 4825
  Copyright terms: Public domain W3C validator