MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difrp Unicode version

Theorem difrp 10403
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
difrp  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )

Proof of Theorem difrp
StepHypRef Expression
1 posdif 9283 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
2 resubcl 9127 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
32ancoms 439 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
4 elrp 10372 . . . 4  |-  ( ( B  -  A )  e.  RR+  <->  ( ( B  -  A )  e.  RR  /\  0  < 
( B  -  A
) ) )
54baib 871 . . 3  |-  ( ( B  -  A )  e.  RR  ->  (
( B  -  A
)  e.  RR+  <->  0  <  ( B  -  A ) ) )
63, 5syl 15 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  -  A )  e.  RR+  <->  0  <  ( B  -  A ) ) )
71, 6bitr4d 247 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RRcr 8752   0cc0 8753    < clt 8883    - cmin 9053   RR+crp 10370
This theorem is referenced by:  xralrple  10548  lincmb01cmp  10793  iccf1o  10794  expmulnbnd  11249  fsumlt  12274  expcnv  12338  blss  17988  icchmeo  18455  icopnfcnv  18456  icopnfhmeo  18457  ivthlem2  18828  ivthlem3  18829  c1liplem1  19359  lhop1lem  19376  ftc1lem4  19402  aaliou3lem7  19745  abelthlem7  19830  cosordlem  19909  logdivlti  19987  cxpaddlelem  20107  atantan  20235  birthdaylem3  20264  chtppilimlem2  20639  pntrlog2bndlem5  20746  pntlemd  20759  pntlemc  20760  ostth2lem1  20783  lt2addrd  23264  ftc1cnnclem  25024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055  df-neg 9056  df-rp 10371
  Copyright terms: Public domain W3C validator