MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnen Unicode version

Theorem difsnen 7128
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
difsnen  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
) )

Proof of Theorem difsnen
StepHypRef Expression
1 difexg 4294 . . . . . 6  |-  ( X  e.  V  ->  ( X  \  { A }
)  e.  _V )
2 enrefg 7077 . . . . . 6  |-  ( ( X  \  { A } )  e.  _V  ->  ( X  \  { A } )  ~~  ( X  \  { A }
) )
31, 2syl 16 . . . . 5  |-  ( X  e.  V  ->  ( X  \  { A }
)  ~~  ( X  \  { A } ) )
433ad2ant1 978 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { A }
) )
5 sneq 3770 . . . . . 6  |-  ( A  =  B  ->  { A }  =  { B } )
65difeq2d 3410 . . . . 5  |-  ( A  =  B  ->  ( X  \  { A }
)  =  ( X 
\  { B }
) )
76breq2d 4167 . . . 4  |-  ( A  =  B  ->  (
( X  \  { A } )  ~~  ( X  \  { A }
)  <->  ( X  \  { A } )  ~~  ( X  \  { B } ) ) )
84, 7syl5ibcom 212 . . 3  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( A  =  B  ->  ( X  \  { A } )  ~~  ( X  \  { B } ) ) )
98imp 419 . 2  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =  B )  ->  ( X  \  { A }
)  ~~  ( X  \  { B } ) )
10 simpl1 960 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  X  e.  V )
11 difexg 4294 . . . . . . 7  |-  ( ( X  \  { A } )  e.  _V  ->  ( ( X  \  { A } )  \  { B } )  e. 
_V )
1210, 1, 113syl 19 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( ( X  \  { A }
)  \  { B } )  e.  _V )
13 enrefg 7077 . . . . . 6  |-  ( ( ( X  \  { A } )  \  { B } )  e.  _V  ->  ( ( X  \  { A } )  \  { B } )  ~~  ( ( X  \  { A } )  \  { B } ) )
1412, 13syl 16 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( ( X  \  { A }
)  \  { B } )  ~~  (
( X  \  { A } )  \  { B } ) )
15 dif32 3549 . . . . 5  |-  ( ( X  \  { A } )  \  { B } )  =  ( ( X  \  { B } )  \  { A } )
1614, 15syl6breq 4194 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( ( X  \  { A }
)  \  { B } )  ~~  (
( X  \  { B } )  \  { A } ) )
17 simpl3 962 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  B  e.  X )
18 simpl2 961 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  A  e.  X )
19 en2sn 7124 . . . . 5  |-  ( ( B  e.  X  /\  A  e.  X )  ->  { B }  ~~  { A } )
2017, 18, 19syl2anc 643 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  { B }  ~~  { A }
)
21 incom 3478 . . . . . 6  |-  ( ( ( X  \  { A } )  \  { B } )  i^i  { B } )  =  ( { B }  i^i  ( ( X  \  { A } )  \  { B } ) )
22 disjdif 3645 . . . . . 6  |-  ( { B }  i^i  (
( X  \  { A } )  \  { B } ) )  =  (/)
2321, 22eqtri 2409 . . . . 5  |-  ( ( ( X  \  { A } )  \  { B } )  i^i  { B } )  =  (/)
2423a1i 11 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { A } )  \  { B } )  i^i  { B } )  =  (/) )
25 incom 3478 . . . . . 6  |-  ( ( ( X  \  { B } )  \  { A } )  i^i  { A } )  =  ( { A }  i^i  ( ( X  \  { B } )  \  { A } ) )
26 disjdif 3645 . . . . . 6  |-  ( { A }  i^i  (
( X  \  { B } )  \  { A } ) )  =  (/)
2725, 26eqtri 2409 . . . . 5  |-  ( ( ( X  \  { B } )  \  { A } )  i^i  { A } )  =  (/)
2827a1i 11 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { B } )  \  { A } )  i^i  { A } )  =  (/) )
29 unen 7127 . . . 4  |-  ( ( ( ( ( X 
\  { A }
)  \  { B } )  ~~  (
( X  \  { B } )  \  { A } )  /\  { B }  ~~  { A } )  /\  (
( ( ( X 
\  { A }
)  \  { B } )  i^i  { B } )  =  (/)  /\  ( ( ( X 
\  { B }
)  \  { A } )  i^i  { A } )  =  (/) ) )  ->  (
( ( X  \  { A } )  \  { B } )  u. 
{ B } ) 
~~  ( ( ( X  \  { B } )  \  { A } )  u.  { A } ) )
3016, 20, 24, 28, 29syl22anc 1185 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { A } )  \  { B } )  u.  { B } )  ~~  (
( ( X  \  { B } )  \  { A } )  u. 
{ A } ) )
31 simpr 448 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  A  =/=  B )
3231necomd 2635 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  B  =/=  A )
33 eldifsn 3872 . . . . 5  |-  ( B  e.  ( X  \  { A } )  <->  ( B  e.  X  /\  B  =/= 
A ) )
3417, 32, 33sylanbrc 646 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  B  e.  ( X  \  { A } ) )
35 difsnid 3889 . . . 4  |-  ( B  e.  ( X  \  { A } )  -> 
( ( ( X 
\  { A }
)  \  { B } )  u.  { B } )  =  ( X  \  { A } ) )
3634, 35syl 16 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { A } )  \  { B } )  u.  { B } )  =  ( X  \  { A } ) )
37 eldifsn 3872 . . . . 5  |-  ( A  e.  ( X  \  { B } )  <->  ( A  e.  X  /\  A  =/= 
B ) )
3818, 31, 37sylanbrc 646 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  A  e.  ( X  \  { B } ) )
39 difsnid 3889 . . . 4  |-  ( A  e.  ( X  \  { B } )  -> 
( ( ( X 
\  { B }
)  \  { A } )  u.  { A } )  =  ( X  \  { B } ) )
4038, 39syl 16 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { B } )  \  { A } )  u.  { A } )  =  ( X  \  { B } ) )
4130, 36, 403brtr3d 4184 . 2  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( X  \  { A } ) 
~~  ( X  \  { B } ) )
429, 41pm2.61dane 2630 1  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   _Vcvv 2901    \ cdif 3262    u. cun 3263    i^i cin 3264   (/)c0 3573   {csn 3759   class class class wbr 4155    ~~ cen 7044
This theorem is referenced by:  domdifsn  7129  domunsncan  7146  infdifsn  7546  cda1dif  7991  enfixsn  26928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-id 4441  df-suc 4530  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-1o 6662  df-er 6843  df-en 7048
  Copyright terms: Public domain W3C validator