MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundi Unicode version

Theorem difundi 3421
Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundi  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  i^i  ( A  \  C ) )

Proof of Theorem difundi
StepHypRef Expression
1 dfun3 3407 . . 3  |-  ( B  u.  C )  =  ( _V  \  (
( _V  \  B
)  i^i  ( _V  \  C ) ) )
21difeq2i 3291 . 2  |-  ( A 
\  ( B  u.  C ) )  =  ( A  \  ( _V  \  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) ) )
3 inindi 3386 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( ( A  i^i  ( _V  \  B ) )  i^i  ( A  i^i  ( _V  \  C ) ) )
4 dfin2 3405 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( A  \  ( _V  \  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) ) )
5 invdif 3410 . . . 4  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
6 invdif 3410 . . . 4  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
75, 6ineq12i 3368 . . 3  |-  ( ( A  i^i  ( _V 
\  B ) )  i^i  ( A  i^i  ( _V  \  C ) ) )  =  ( ( A  \  B
)  i^i  ( A  \  C ) )
83, 4, 73eqtr3i 2311 . 2  |-  ( A 
\  ( _V  \ 
( ( _V  \  B )  i^i  ( _V  \  C ) ) ) )  =  ( ( A  \  B
)  i^i  ( A  \  C ) )
92, 8eqtri 2303 1  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  i^i  ( A  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151
This theorem is referenced by:  undm  3426  uncld  16778  inmbl  18899  clsun  26246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159
  Copyright terms: Public domain W3C validator