MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundir Unicode version

Theorem difundir 3498
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir  |-  ( ( A  u.  B ) 
\  C )  =  ( ( A  \  C )  u.  ( B  \  C ) )

Proof of Theorem difundir
StepHypRef Expression
1 indir 3493 . 2  |-  ( ( A  u.  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  ( _V  \  C ) )  u.  ( B  i^i  ( _V  \  C ) ) )
2 invdif 3486 . 2  |-  ( ( A  u.  B )  i^i  ( _V  \  C ) )  =  ( ( A  u.  B )  \  C
)
3 invdif 3486 . . 3  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
4 invdif 3486 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
53, 4uneq12i 3403 . 2  |-  ( ( A  i^i  ( _V 
\  C ) )  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  \  C
)  u.  ( B 
\  C ) )
61, 2, 53eqtr3i 2386 1  |-  ( ( A  u.  B ) 
\  C )  =  ( ( A  \  C )  u.  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1642   _Vcvv 2864    \ cdif 3225    u. cun 3226    i^i cin 3227
This theorem is referenced by:  symdif1  3509  difun2  3609  diftpsn3  3835  strleun  13335  mreexmrid  13644  mreexexlem2d  13646  dprd2da  15376  dmdprdsplit2lem  15379  ablfac1eulem  15406  lbsextlem4  16013  opsrtoslem2  16325  nulmbl2  18998  uniioombllem3  19044  ex-dif  20922  imadifxp  23241  ballotlemfp1  23998  ballotlemgun  24031  onint1  25447  mvdco  26711
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ral 2624  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235
  Copyright terms: Public domain W3C validator