Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihatexv2 Unicode version

Theorem dihatexv2 31456
Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.)
Hypotheses
Ref Expression
dihatexv2.a  |-  A  =  ( Atoms `  K )
dihatexv2.h  |-  H  =  ( LHyp `  K
)
dihatexv2.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihatexv2.v  |-  V  =  ( Base `  U
)
dihatexv2.o  |-  .0.  =  ( 0g `  U )
dihatexv2.n  |-  N  =  ( LSpan `  U )
dihatexv2.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihatexv2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
dihatexv2  |-  ( ph  ->  ( Q  e.  A  <->  E. x  e.  ( V 
\  {  .0.  }
) Q  =  ( `' I `  ( N `
 { x }
) ) ) )
Distinct variable groups:    x, A    x, I    x, K    x, N    x, Q    x, V    x, W    ph, x
Allowed substitution hints:    U( x)    H( x)    .0. ( x)

Proof of Theorem dihatexv2
StepHypRef Expression
1 eqid 2389 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 dihatexv2.a . . . 4  |-  A  =  ( Atoms `  K )
31, 2atbase 29406 . . 3  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
43anim2i 553 . 2  |-  ( (
ph  /\  Q  e.  A )  ->  ( ph  /\  Q  e.  (
Base `  K )
) )
5 dihatexv2.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
65adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 eldifi 3414 . . . . . . 7  |-  ( x  e.  ( V  \  {  .0.  } )  ->  x  e.  V )
8 dihatexv2.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
9 dihatexv2.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
10 dihatexv2.v . . . . . . . 8  |-  V  =  ( Base `  U
)
11 dihatexv2.n . . . . . . . 8  |-  N  =  ( LSpan `  U )
12 dihatexv2.i . . . . . . . 8  |-  I  =  ( ( DIsoH `  K
) `  W )
138, 9, 10, 11, 12dihlsprn 31448 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  e.  V
)  ->  ( N `  { x } )  e.  ran  I )
145, 7, 13syl2an 464 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( N `  { x } )  e.  ran  I )
151, 8, 12dihcnvcl 31388 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( N `  { x } )  e.  ran  I )  ->  ( `' I `  ( N `  {
x } ) )  e.  ( Base `  K
) )
166, 14, 15syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( `' I `  ( N `
 { x }
) )  e.  (
Base `  K )
)
17 eleq1a 2458 . . . . 5  |-  ( ( `' I `  ( N `
 { x }
) )  e.  (
Base `  K )  ->  ( Q  =  ( `' I `  ( N `
 { x }
) )  ->  Q  e.  ( Base `  K
) ) )
1816, 17syl 16 . . . 4  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( Q  =  ( `' I `  ( N `  { x } ) )  ->  Q  e.  ( Base `  K )
) )
1918rexlimdva 2775 . . 3  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) Q  =  ( `' I `  ( N `  { x } ) )  ->  Q  e.  ( Base `  K ) ) )
2019imdistani 672 . 2  |-  ( (
ph  /\  E. x  e.  ( V  \  {  .0.  } ) Q  =  ( `' I `  ( N `  { x } ) ) )  ->  ( ph  /\  Q  e.  ( Base `  K ) ) )
21 dihatexv2.o . . . 4  |-  .0.  =  ( 0g `  U )
225adantr 452 . . . 4  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
23 simpr 448 . . . 4  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  Q  e.  ( Base `  K )
)
241, 2, 8, 9, 10, 21, 11, 12, 22, 23dihatexv 31455 . . 3  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  ( Q  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) ( I `  Q )  =  ( N `  { x } ) ) )
2522adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2622, 7, 13syl2an 464 . . . . . . 7  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( N `  {
x } )  e. 
ran  I )
278, 12dihcnvid2 31390 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( N `  { x } )  e.  ran  I )  ->  ( I `  ( `' I `  ( N `
 { x }
) ) )  =  ( N `  {
x } ) )
2825, 26, 27syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( I `  ( `' I `  ( N `
 { x }
) ) )  =  ( N `  {
x } ) )
2928eqeq2d 2400 . . . . 5  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( ( I `  Q )  =  ( I `  ( `' I `  ( N `
 { x }
) ) )  <->  ( I `  Q )  =  ( N `  { x } ) ) )
30 simplr 732 . . . . . 6  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  ->  Q  e.  ( Base `  K ) )
3125, 26, 15syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( `' I `  ( N `  { x } ) )  e.  ( Base `  K
) )
321, 8, 12dih11 31382 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Q  e.  (
Base `  K )  /\  ( `' I `  ( N `  { x } ) )  e.  ( Base `  K
) )  ->  (
( I `  Q
)  =  ( I `
 ( `' I `  ( N `  {
x } ) ) )  <->  Q  =  ( `' I `  ( N `
 { x }
) ) ) )
3325, 30, 31, 32syl3anc 1184 . . . . 5  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( ( I `  Q )  =  ( I `  ( `' I `  ( N `
 { x }
) ) )  <->  Q  =  ( `' I `  ( N `
 { x }
) ) ) )
3429, 33bitr3d 247 . . . 4  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( ( I `  Q )  =  ( N `  { x } )  <->  Q  =  ( `' I `  ( N `
 { x }
) ) ) )
3534rexbidva 2668 . . 3  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  ( E. x  e.  ( V  \  {  .0.  } ) ( I `  Q
)  =  ( N `
 { x }
)  <->  E. x  e.  ( V  \  {  .0.  } ) Q  =  ( `' I `  ( N `
 { x }
) ) ) )
3624, 35bitrd 245 . 2  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  ( Q  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) Q  =  ( `' I `  ( N `
 { x }
) ) ) )
374, 20, 36pm5.21nd 869 1  |-  ( ph  ->  ( Q  e.  A  <->  E. x  e.  ( V 
\  {  .0.  }
) Q  =  ( `' I `  ( N `
 { x }
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2652    \ cdif 3262   {csn 3759   `'ccnv 4819   ran crn 4821   ` cfv 5396   Basecbs 13398   0gc0g 13652   LSpanclspn 15976   Atomscatm 29380   HLchlt 29467   LHypclh 30100   DVecHcdvh 31195   DIsoHcdih 31345
This theorem is referenced by:  djhcvat42  31532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-tpos 6417  df-undef 6481  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-sca 13474  df-vsca 13475  df-0g 13656  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-mnd 14619  df-submnd 14668  df-grp 14741  df-minusg 14742  df-sbg 14743  df-subg 14870  df-cntz 15045  df-lsm 15199  df-cmn 15343  df-abl 15344  df-mgp 15578  df-rng 15592  df-ur 15594  df-oppr 15657  df-dvdsr 15675  df-unit 15676  df-invr 15706  df-dvr 15717  df-drng 15766  df-lmod 15881  df-lss 15938  df-lsp 15977  df-lvec 16104  df-lsatoms 29093  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-llines 29614  df-lplanes 29615  df-lvols 29616  df-lines 29617  df-psubsp 29619  df-pmap 29620  df-padd 29912  df-lhyp 30104  df-laut 30105  df-ldil 30220  df-ltrn 30221  df-trl 30275  df-tendo 30871  df-edring 30873  df-disoa 31146  df-dvech 31196  df-dib 31256  df-dic 31290  df-dih 31346
  Copyright terms: Public domain W3C validator