Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihffval Unicode version

Theorem dihffval 32042
Description: The isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
dihffval  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
Distinct variable groups:    A, q    w, H    u, q, w, x, K
Allowed substitution hints:    A( x, w, u)    B( x, w, u, q)    H( x, u, q)    .\/ ( x, w, u, q)    .<_ ( x, w, u, q)    ./\ (
x, w, u, q)    V( x, w, u, q)

Proof of Theorem dihffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2809 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 5541 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 dihval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2346 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5541 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
6 dihval.b . . . . . 6  |-  B  =  ( Base `  K
)
75, 6syl6eqr 2346 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
8 fveq2 5541 . . . . . . . 8  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
9 dihval.l . . . . . . . 8  |-  .<_  =  ( le `  K )
108, 9syl6eqr 2346 . . . . . . 7  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1110breqd 4050 . . . . . 6  |-  ( k  =  K  ->  (
x ( le `  k ) w  <->  x  .<_  w ) )
12 fveq2 5541 . . . . . . . 8  |-  ( k  =  K  ->  ( DIsoB `  k )  =  ( DIsoB `  K )
)
1312fveq1d 5543 . . . . . . 7  |-  ( k  =  K  ->  (
( DIsoB `  k ) `  w )  =  ( ( DIsoB `  K ) `  w ) )
1413fveq1d 5543 . . . . . 6  |-  ( k  =  K  ->  (
( ( DIsoB `  k
) `  w ) `  x )  =  ( ( ( DIsoB `  K
) `  w ) `  x ) )
15 fveq2 5541 . . . . . . . . 9  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
1615fveq1d 5543 . . . . . . . 8  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
1716fveq2d 5545 . . . . . . 7  |-  ( k  =  K  ->  ( LSubSp `
 ( ( DVecH `  k ) `  w
) )  =  (
LSubSp `  ( ( DVecH `  K ) `  w
) ) )
18 fveq2 5541 . . . . . . . . 9  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
19 dihval.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
2018, 19syl6eqr 2346 . . . . . . . 8  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
2110breqd 4050 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
q ( le `  k ) w  <->  q  .<_  w ) )
2221notbid 285 . . . . . . . . . 10  |-  ( k  =  K  ->  ( -.  q ( le `  k ) w  <->  -.  q  .<_  w ) )
23 fveq2 5541 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
24 dihval.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
2523, 24syl6eqr 2346 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
26 eqidd 2297 . . . . . . . . . . . 12  |-  ( k  =  K  ->  q  =  q )
27 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  ( meet `  k )  =  ( meet `  K
) )
28 dihval.m . . . . . . . . . . . . . 14  |-  ./\  =  ( meet `  K )
2927, 28syl6eqr 2346 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( meet `  k )  = 
./\  )
3029oveqd 5891 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
x ( meet `  k
) w )  =  ( x  ./\  w
) )
3125, 26, 30oveq123d 5895 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  ( q  .\/  (
x  ./\  w )
) )
3231eqeq1d 2304 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( q ( join `  k ) ( x ( meet `  k
) w ) )  =  x  <->  ( q  .\/  ( x  ./\  w
) )  =  x ) )
3322, 32anbi12d 691 . . . . . . . . 9  |-  ( k  =  K  ->  (
( -.  q ( le `  k ) w  /\  ( q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  <->  ( -.  q  .<_  w  /\  (
q  .\/  ( x  ./\  w ) )  =  x ) ) )
3416fveq2d 5545 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( LSSum `  ( ( DVecH `  k ) `  w
) )  =  (
LSSum `  ( ( DVecH `  K ) `  w
) ) )
35 fveq2 5541 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( DIsoC `  k )  =  ( DIsoC `  K )
)
3635fveq1d 5543 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
( DIsoC `  k ) `  w )  =  ( ( DIsoC `  K ) `  w ) )
3736fveq1d 5543 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( DIsoC `  k
) `  w ) `  q )  =  ( ( ( DIsoC `  K
) `  w ) `  q ) )
3813, 30fveq12d 5547 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) )  =  ( ( ( DIsoB `  K ) `  w ) `  (
x  ./\  w )
) )
3934, 37, 38oveq123d 5895 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) )  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) )
4039eqeq2d 2307 . . . . . . . . 9  |-  ( k  =  K  ->  (
u  =  ( ( ( ( DIsoC `  k
) `  w ) `  q ) ( LSSum `  ( ( DVecH `  k
) `  w )
) ( ( (
DIsoB `  k ) `  w ) `  (
x ( meet `  k
) w ) ) )  <->  u  =  (
( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) )
4133, 40imbi12d 311 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) )  <->  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4220, 41raleqbidv 2761 . . . . . . 7  |-  ( k  =  K  ->  ( A. q  e.  ( Atoms `  k ) ( ( -.  q ( le `  k ) w  /\  ( q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4317, 42riotaeqbidv 6323 . . . . . 6  |-  ( k  =  K  ->  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k
) `  w )
) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) )  =  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4411, 14, 43ifbieq12d 3600 . . . . 5  |-  ( k  =  K  ->  if ( x ( le
`  k ) w ,  ( ( (
DIsoB `  k ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le
`  k ) w  /\  ( q (
join `  k )
( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) )  =  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) )
457, 44mpteq12dv 4114 . . . 4  |-  ( k  =  K  ->  (
x  e.  ( Base `  k )  |->  if ( x ( le `  k ) w ,  ( ( ( DIsoB `  k ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le
`  k ) w  /\  ( q (
join `  k )
( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )
464, 45mpteq12dv 4114 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
47 df-dih 32041 . . 3  |-  DIsoH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) ) )
48 fvex 5555 . . . . 5  |-  ( LHyp `  K )  e.  _V
493, 48eqeltri 2366 . . . 4  |-  H  e. 
_V
5049mptex 5762 . . 3  |-  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )  e.  _V
5146, 47, 50fvmpt 5618 . 2  |-  ( K  e.  _V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
521, 51syl 15 1  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   ifcif 3578   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   iota_crio 6313   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   LSSumclsm 14961   LSubSpclss 15705   Atomscatm 30075   LHypclh 30795   DVecHcdvh 31890   DIsoBcdib 31950   DIsoCcdic 31984   DIsoHcdih 32040
This theorem is referenced by:  dihfval  32043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-riota 6320  df-dih 32041
  Copyright terms: Public domain W3C validator