Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Structured version   Unicode version

Theorem dihglblem3N 32030
 Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b
dihglblem.l
dihglblem.m
dihglblem.g
dihglblem.h
dihglblem.t
dihglblem.i
dihglblem.ih
Assertion
Ref Expression
dihglblem3N
Distinct variable groups:   ,,,   ,   ,,   ,   ,   ,   ,,,   ,   ,,,   , ,   ,   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,,)   (,,)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 957 . . . 4
2 dihglblem.t . . . . . 6
3 simp11l 1068 . . . . . . . . . . . 12
4 hllat 30098 . . . . . . . . . . . 12
53, 4syl 16 . . . . . . . . . . 11
6 simp12l 1070 . . . . . . . . . . . 12
7 simp3 959 . . . . . . . . . . . 12
86, 7sseldd 3341 . . . . . . . . . . 11
9 simp11r 1069 . . . . . . . . . . . 12
10 dihglblem.b . . . . . . . . . . . . 13
11 dihglblem.h . . . . . . . . . . . . 13
1210, 11lhpbase 30732 . . . . . . . . . . . 12
139, 12syl 16 . . . . . . . . . . 11
14 dihglblem.l . . . . . . . . . . . 12
15 dihglblem.m . . . . . . . . . . . 12
1610, 14, 15latmle2 14498 . . . . . . . . . . 11
175, 8, 13, 16syl3anc 1184 . . . . . . . . . 10
18173expia 1155 . . . . . . . . 9
19 breq1 4207 . . . . . . . . . 10
2019biimprcd 217 . . . . . . . . 9
2118, 20syl6 31 . . . . . . . 8
2221rexlimdv 2821 . . . . . . 7
2322ss2rabdv 3416 . . . . . 6
242, 23syl5eqss 3384 . . . . 5
25 dihglblem.i . . . . . . 7
2610, 14, 11, 25dibdmN 31892 . . . . . 6
27263ad2ant1 978 . . . . 5
2824, 27sseqtr4d 3377 . . . 4
29 dihglblem.g . . . . . 6
3010, 14, 15, 29, 11, 2dihglblem2aN 32028 . . . . 5
31303adant3 977 . . . 4
3229, 11, 25dibglbN 31901 . . . 4
331, 28, 31, 32syl12anc 1182 . . 3
3410, 14, 15, 29, 11, 2dihglblem2N 32029 . . . . 5
35343adant2r 1179 . . . 4
3635fveq2d 5724 . . 3
37 simpl1 960 . . . . 5
3824sselda 3340 . . . . . 6
39 breq1 4207 . . . . . . 7
4039elrab 3084 . . . . . 6
4138, 40sylib 189 . . . . 5
42 dihglblem.ih . . . . . 6
4310, 14, 11, 42, 25dihvalb 31972 . . . . 5
4437, 41, 43syl2anc 643 . . . 4
4544iineq2dv 4107 . . 3
4633, 36, 453eqtr4rd 2478 . 2
47 simp1l 981 . . . . 5
48 hlclat 30093 . . . . 5
4947, 48syl 16 . . . 4
50 simp2l 983 . . . 4
5110, 29clatglbcl 14533 . . . 4
5249, 50, 51syl2anc 643 . . 3
53 simp3 959 . . 3
5410, 14, 11, 42, 25dihvalb 31972 . . 3
551, 52, 53, 54syl12anc 1182 . 2
5635fveq2d 5724 . 2
5746, 55, 563eqtr2rd 2474 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936   wceq 1652   wcel 1725   wne 2598  wrex 2698  crab 2701   wss 3312  c0 3620  ciin 4086   class class class wbr 4204   cdm 4870  cfv 5446  (class class class)co 6073  cbs 13461  cple 13528  cglb 14392  cmee 14394  clat 14466  ccla 14528  chlt 30085  clh 30718  cdib 31873  cdih 31963 This theorem is referenced by:  dihglblem3aN  32031 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893  df-disoa 31764  df-dib 31874  df-dih 31964
 Copyright terms: Public domain W3C validator