Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Unicode version

Theorem dihglblem3N 32107
Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b  |-  B  =  ( Base `  K
)
dihglblem.l  |-  .<_  =  ( le `  K )
dihglblem.m  |-  ./\  =  ( meet `  K )
dihglblem.g  |-  G  =  ( glb `  K
)
dihglblem.h  |-  H  =  ( LHyp `  K
)
dihglblem.t  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
dihglblem.i  |-  J  =  ( ( DIsoB `  K
) `  W )
dihglblem.ih  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihglblem3N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  T ) )  = 
|^|_ x  e.  T  ( I `  x
) )
Distinct variable groups:    x, u, v,  ./\    x,  .<_    x, B, u    x, G    x, H    x, K    x, S, u, v    x, T    x, W, u, v    u,  .<_ , v   
v, B    u, G, v    u, H, v    u, K, v
Allowed substitution hints:    T( v, u)    I( x, v, u)    J( x, v, u)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 955 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dihglblem.t . . . . . 6  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
3 simp11l 1066 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  K  e.  HL )
4 hllat 30175 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 15 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  K  e.  Lat )
6 simp12l 1068 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  S  C_  B )
7 simp3 957 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  v  e.  S )
86, 7sseldd 3194 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  v  e.  B )
9 simp11r 1067 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  W  e.  H )
10 dihglblem.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  K
)
11 dihglblem.h . . . . . . . . . . . . 13  |-  H  =  ( LHyp `  K
)
1210, 11lhpbase 30809 . . . . . . . . . . . 12  |-  ( W  e.  H  ->  W  e.  B )
139, 12syl 15 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  W  e.  B )
14 dihglblem.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
15 dihglblem.m . . . . . . . . . . . 12  |-  ./\  =  ( meet `  K )
1610, 14, 15latmle2 14199 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  v  e.  B  /\  W  e.  B )  ->  ( v  ./\  W
)  .<_  W )
175, 8, 13, 16syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  (
v  ./\  W )  .<_  W )
18173expia 1153 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  (
v  e.  S  -> 
( v  ./\  W
)  .<_  W ) )
19 breq1 4042 . . . . . . . . . 10  |-  ( u  =  ( v  ./\  W )  ->  ( u  .<_  W  <->  ( v  ./\  W )  .<_  W )
)
2019biimprcd 216 . . . . . . . . 9  |-  ( ( v  ./\  W )  .<_  W  ->  ( u  =  ( v  ./\  W )  ->  u  .<_  W ) )
2118, 20syl6 29 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  (
v  e.  S  -> 
( u  =  ( v  ./\  W )  ->  u  .<_  W )
) )
2221rexlimdv 2679 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  ( E. v  e.  S  u  =  ( v  ./\  W )  ->  u  .<_  W ) )
2322ss2rabdv 3267 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }  C_  { u  e.  B  |  u  .<_  W } )
242, 23syl5eqss 3235 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  C_ 
{ u  e.  B  |  u  .<_  W }
)
25 dihglblem.i . . . . . . 7  |-  J  =  ( ( DIsoB `  K
) `  W )
2610, 14, 11, 25dibdmN 31969 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  J  =  {
u  e.  B  |  u  .<_  W } )
27263ad2ant1 976 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  dom  J  =  { u  e.  B  |  u  .<_  W } )
2824, 27sseqtr4d 3228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  C_ 
dom  J )
29 dihglblem.g . . . . . 6  |-  G  =  ( glb `  K
)
3010, 14, 15, 29, 11, 2dihglblem2aN 32105 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  T  =/=  (/) )
31303adant3 975 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  =/=  (/) )
3229, 11, 25dibglbN 31978 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  dom  J  /\  T  =/=  (/) ) )  ->  ( J `  ( G `  T ) )  = 
|^|_ x  e.  T  ( J `  x ) )
331, 28, 31, 32syl12anc 1180 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( J `  ( G `  T ) )  = 
|^|_ x  e.  T  ( J `  x ) )
3410, 14, 15, 29, 11, 2dihglblem2N 32106 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  B  /\  ( G `  S
)  .<_  W )  -> 
( G `  S
)  =  ( G `
 T ) )
35343adant2r 1177 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  =  ( G `  T ) )
3635fveq2d 5545 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( J `  ( G `  S ) )  =  ( J `  ( G `  T )
) )
37 simpl1 958 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
3824sselda 3193 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  x  e.  { u  e.  B  |  u  .<_  W }
)
39 breq1 4042 . . . . . . 7  |-  ( u  =  x  ->  (
u  .<_  W  <->  x  .<_  W ) )
4039elrab 2936 . . . . . 6  |-  ( x  e.  { u  e.  B  |  u  .<_  W }  <->  ( x  e.  B  /\  x  .<_  W ) )
4138, 40sylib 188 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  (
x  e.  B  /\  x  .<_  W ) )
42 dihglblem.ih . . . . . 6  |-  I  =  ( ( DIsoH `  K
) `  W )
4310, 14, 11, 42, 25dihvalb 32049 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  B  /\  x  .<_  W ) )  ->  (
I `  x )  =  ( J `  x ) )
4437, 41, 43syl2anc 642 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  (
I `  x )  =  ( J `  x ) )
4544iineq2dv 3943 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  |^|_ x  e.  T  ( I `  x )  =  |^|_ x  e.  T  ( J `
 x ) )
4633, 36, 453eqtr4rd 2339 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  |^|_ x  e.  T  ( I `  x )  =  ( J `  ( G `
 S ) ) )
47 simp1l 979 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  K  e.  HL )
48 hlclat 30170 . . . . 5  |-  ( K  e.  HL  ->  K  e.  CLat )
4947, 48syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  K  e.  CLat )
50 simp2l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  S  C_  B )
5110, 29clatglbcl 14234 . . . 4  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( G `  S )  e.  B )
5249, 50, 51syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  e.  B )
53 simp3 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  .<_  W )
5410, 14, 11, 42, 25dihvalb 32049 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G `
 S )  e.  B  /\  ( G `
 S )  .<_  W ) )  -> 
( I `  ( G `  S )
)  =  ( J `
 ( G `  S ) ) )
551, 52, 53, 54syl12anc 1180 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  =  ( J `  ( G `  S )
) )
5635fveq2d 5545 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  =  ( I `  ( G `  T )
) )
5746, 55, 563eqtr2rd 2335 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  T ) )  = 
|^|_ x  e.  T  ( I `  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   {crab 2560    C_ wss 3165   (/)c0 3468   |^|_ciin 3922   class class class wbr 4039   dom cdm 4705   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   glbcglb 14093   meetcmee 14095   Latclat 14167   CLatccla 14229   HLchlt 30162   LHypclh 30795   DIsoBcdib 31950   DIsoHcdih 32040
This theorem is referenced by:  dihglblem3aN  32108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-disoa 31841  df-dib 31951  df-dih 32041
  Copyright terms: Public domain W3C validator