Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihintcl Unicode version

Theorem dihintcl 31534
Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014.)
Hypotheses
Ref Expression
dihintcl.h  |-  H  =  ( LHyp `  K
)
dihintcl.i  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihintcl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )

Proof of Theorem dihintcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2 dihintcl.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 dihintcl.i . . . . . . . 8  |-  I  =  ( ( DIsoH `  K
) `  W )
41, 2, 3dihfn 31458 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  ( Base `  K ) )
51, 2, 3dihdm 31459 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  I  =  (
Base `  K )
)
65fneq2d 5336 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I  Fn  dom  I 
<->  I  Fn  ( Base `  K ) ) )
74, 6mpbird 223 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  dom  I
)
87adantr 451 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I  Fn  dom  I )
9 cnvimass 5033 . . . . 5  |-  ( `' I " S ) 
C_  dom  I
10 fnssres 5357 . . . . 5  |-  ( ( I  Fn  dom  I  /\  ( `' I " S )  C_  dom  I )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
118, 9, 10sylancl 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I  |`  ( `' I " S ) )  Fn  ( `' I " S ) )
12 fniinfv 5581 . . . 4  |-  ( ( I  |`  ( `' I " S ) )  Fn  ( `' I " S )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
1311, 12syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| ran  ( I  |`  ( `' I " S ) ) )
14 df-ima 4702 . . . . 5  |-  ( I
" ( `' I " S ) )  =  ran  ( I  |`  ( `' I " S ) )
154adantr 451 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I  Fn  ( Base `  K
) )
16 dffn4 5457 . . . . . . 7  |-  ( I  Fn  ( Base `  K
)  <->  I : (
Base `  K ) -onto-> ran  I )
1715, 16sylib 188 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I : ( Base `  K
) -onto-> ran  I )
18 simprl 732 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  C_ 
ran  I )
19 foimacnv 5490 . . . . . 6  |-  ( ( I : ( Base `  K ) -onto-> ran  I  /\  S  C_  ran  I
)  ->  ( I " ( `' I " S ) )  =  S )
2017, 18, 19syl2anc 642 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I " ( `' I " S ) )  =  S )
2114, 20syl5eqr 2329 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ran  ( I  |`  ( `' I " S ) )  =  S )
2221inteqd 3867 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| ran  ( I  |`  ( `' I " S ) )  =  |^| S
)
2313, 22eqtrd 2315 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^| S )
24 simpl 443 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
255adantr 451 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  dom  I  =  ( Base `  K ) )
269, 25syl5sseq 3226 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S ) 
C_  ( Base `  K
) )
27 simprr 733 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
28 n0 3464 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. y  y  e.  S )
2927, 28sylib 188 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  E. y 
y  e.  S )
3018sselda 3180 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  y  e.  ran  I
)
3125fneq2d 5336 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I  Fn  dom  I  <->  I  Fn  ( Base `  K
) ) )
3215, 31mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  I  Fn  dom  I )
3332adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  I  Fn  dom  I
)
34 fvelrnb 5570 . . . . . . . . . . 11  |-  ( I  Fn  dom  I  -> 
( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3533, 34syl 15 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( y  e.  ran  I 
<->  E. x  e.  dom  I ( I `  x )  =  y ) )
3630, 35mpbid 201 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  E. x  e.  dom  I ( I `  x )  =  y )
37 fnfun 5341 . . . . . . . . . . . . . . . . 17  |-  ( I  Fn  ( Base `  K
)  ->  Fun  I )
3815, 37syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  Fun  I )
39 fvimacnv 5640 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  I  /\  x  e.  dom  I )  -> 
( ( I `  x )  e.  S  <->  x  e.  ( `' I " S ) ) )
4038, 39sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  <->  x  e.  ( `' I " S ) ) )
41 ne0i 3461 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( `' I " S )  ->  ( `' I " S )  =/=  (/) )
4240, 41syl6bi 219 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  x  e.  dom  I )  ->  ( ( I `
 x )  e.  S  ->  ( `' I " S )  =/=  (/) ) )
4342ex 423 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
x  e.  dom  I  ->  ( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
44 eleq1 2343 . . . . . . . . . . . . . . 15  |-  ( ( I `  x )  =  y  ->  (
( I `  x
)  e.  S  <->  y  e.  S ) )
4544biimprd 214 . . . . . . . . . . . . . 14  |-  ( ( I `  x )  =  y  ->  (
y  e.  S  -> 
( I `  x
)  e.  S ) )
4645imim1d 69 . . . . . . . . . . . . 13  |-  ( ( I `  x )  =  y  ->  (
( ( I `  x )  e.  S  ->  ( `' I " S )  =/=  (/) )  -> 
( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) )
4743, 46syl9 66 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( I `  x
)  =  y  -> 
( x  e.  dom  I  ->  ( y  e.  S  ->  ( `' I " S )  =/=  (/) ) ) ) )
4847com24 81 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
y  e.  S  -> 
( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) ) )
4948imp 418 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( x  e.  dom  I  ->  ( ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) ) )
5049rexlimdv 2666 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( E. x  e. 
dom  I ( I `
 x )  =  y  ->  ( `' I " S )  =/=  (/) ) )
5136, 50mpd 14 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  /\  y  e.  S )  ->  ( `' I " S )  =/=  (/) )
5251ex 423 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
y  e.  S  -> 
( `' I " S )  =/=  (/) ) )
5352exlimdv 1664 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( E. y  y  e.  S  ->  ( `' I " S )  =/=  (/) ) )
5429, 53mpd 14 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  ( `' I " S )  =/=  (/) )
55 eqid 2283 . . . . . 6  |-  ( glb `  K )  =  ( glb `  K )
561, 55, 2, 3dihglb 31531 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( `' I " S ) 
C_  ( Base `  K
)  /\  ( `' I " S )  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `  y ) )
5724, 26, 54, 56syl12anc 1180 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( I `  y ) )
58 fvres 5542 . . . . 5  |-  ( y  e.  ( `' I " S )  ->  (
( I  |`  ( `' I " S ) ) `  y )  =  ( I `  y ) )
5958iineq2i 3924 . . . 4  |-  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  = 
|^|_ y  e.  ( `' I " S ) ( I `  y
)
6057, 59syl6eqr 2333 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  =  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `  y ) )
61 hlclat 29548 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
6261ad2antrr 706 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  K  e.  CLat )
631, 55clatglbcl 14218 . . . . 5  |-  ( ( K  e.  CLat  /\  ( `' I " S ) 
C_  ( Base `  K
) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
6462, 26, 63syl2anc 642 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
( glb `  K
) `  ( `' I " S ) )  e.  ( Base `  K
) )
651, 2, 3dihcl 31460 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( glb `  K ) `  ( `' I " S ) )  e.  ( Base `  K ) )  -> 
( I `  (
( glb `  K
) `  ( `' I " S ) ) )  e.  ran  I
)
6664, 65syldan 456 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  (
I `  ( ( glb `  K ) `  ( `' I " S ) ) )  e.  ran  I )
6760, 66eqeltrrd 2358 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^|_ y  e.  ( `' I " S ) ( ( I  |`  ( `' I " S ) ) `
 y )  e. 
ran  I )
6823, 67eqeltrrd 2358 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  ran  I  /\  S  =/=  (/) ) )  ->  |^| S  e.  ran  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    C_ wss 3152   (/)c0 3455   |^|cint 3862   |^|_ciin 3906   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255   Basecbs 13148   glbcglb 14077   CLatccla 14213   HLchlt 29540   LHypclh 30173   DIsoHcdih 31418
This theorem is referenced by:  doch2val2  31554  dochocss  31556
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-undef 6298  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-cntz 14793  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-drng 15514  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lvec 15856  df-lsatoms 29166  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944  df-edring 30946  df-disoa 31219  df-dvech 31269  df-dib 31329  df-dic 31363  df-dih 31419
  Copyright terms: Public domain W3C validator