Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihlspsnssN Unicode version

Theorem dihlspsnssN 31522
Description: A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dih1dor0.h  |-  H  =  ( LHyp `  K
)
dih1dor0.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihldor0.v  |-  V  =  ( Base `  U
)
dih1dor0.s  |-  S  =  ( LSubSp `  U )
dih1dor0.n  |-  N  =  ( LSpan `  U )
dih1dor0.i  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihlspsnssN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `
 { X }
) )  ->  ( T  e.  S  <->  T  e.  ran  I ) )

Proof of Theorem dihlspsnssN
StepHypRef Expression
1 simpr 447 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  ( N `  { X } ) )  ->  T  =  ( N `  { X } ) )
2 dih1dor0.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 dih1dor0.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
4 dihldor0.v . . . . . . . 8  |-  V  =  ( Base `  U
)
5 dih1dor0.n . . . . . . . 8  |-  N  =  ( LSpan `  U )
6 dih1dor0.i . . . . . . . 8  |-  I  =  ( ( DIsoH `  K
) `  W )
72, 3, 4, 5, 6dihlsprn 31521 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V
)  ->  ( N `  { X } )  e.  ran  I )
873adant3 975 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `
 { X }
) )  ->  ( N `  { X } )  e.  ran  I )
98ad2antrr 706 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  ( N `  { X } ) )  -> 
( N `  { X } )  e.  ran  I )
101, 9eqeltrd 2357 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  ( N `  { X } ) )  ->  T  e.  ran  I )
11 simpr 447 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  ->  T  =  { ( 0g `  U ) } )
12 simpll1 994 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  -> 
( K  e.  HL  /\  W  e.  H ) )
13 eqid 2283 . . . . . . . 8  |-  ( 0.
`  K )  =  ( 0. `  K
)
14 eqid 2283 . . . . . . . 8  |-  ( 0g
`  U )  =  ( 0g `  U
)
1513, 2, 6, 3, 14dih0 31470 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  ( 0. `  K ) )  =  { ( 0g
`  U ) } )
1612, 15syl 15 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  -> 
( I `  ( 0. `  K ) )  =  { ( 0g
`  U ) } )
1711, 16eqtr4d 2318 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  ->  T  =  ( I `  ( 0. `  K
) ) )
18 eqid 2283 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1918, 2, 6dihfn 31458 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  ( Base `  K ) )
2012, 19syl 15 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  ->  I  Fn  ( Base `  K ) )
21 simp1l 979 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `
 { X }
) )  ->  K  e.  HL )
2221ad2antrr 706 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  ->  K  e.  HL )
23 hlop 29552 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
2418, 13op0cl 29374 . . . . . . 7  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
2522, 23, 243syl 18 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  -> 
( 0. `  K
)  e.  ( Base `  K ) )
26 fnfvelrn 5662 . . . . . 6  |-  ( ( I  Fn  ( Base `  K )  /\  ( 0. `  K )  e.  ( Base `  K
) )  ->  (
I `  ( 0. `  K ) )  e. 
ran  I )
2720, 25, 26syl2anc 642 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  -> 
( I `  ( 0. `  K ) )  e.  ran  I )
2817, 27eqeltrd 2357 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  /\  T  =  {
( 0g `  U
) } )  ->  T  e.  ran  I )
29 simpl1 958 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
302, 3, 29dvhlvec 31299 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  ->  U  e.  LVec )
31 simpr 447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  ->  T  e.  S )
32 simpl2 959 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  ->  X  e.  V )
33 simpl3 960 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  ->  T  C_  ( N `  { X } ) )
34 dih1dor0.s . . . . . 6  |-  S  =  ( LSubSp `  U )
354, 14, 34, 5lspsnat 15898 . . . . 5  |-  ( ( ( U  e.  LVec  /\  T  e.  S  /\  X  e.  V )  /\  T  C_  ( N `
 { X }
) )  ->  ( T  =  ( N `  { X } )  \/  T  =  {
( 0g `  U
) } ) )
3630, 31, 32, 33, 35syl31anc 1185 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  ->  ( T  =  ( N `  { X } )  \/  T  =  { ( 0g `  U ) } ) )
3710, 28, 36mpjaodan 761 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `  { X } ) )  /\  T  e.  S )  ->  T  e.  ran  I
)
3837ex 423 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `
 { X }
) )  ->  ( T  e.  S  ->  T  e.  ran  I ) )
392, 3, 6, 34dihsslss 31466 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ran  I  C_  S
)
40393ad2ant1 976 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `
 { X }
) )  ->  ran  I  C_  S )
4140sseld 3179 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `
 { X }
) )  ->  ( T  e.  ran  I  ->  T  e.  S )
)
4238, 41impbid 183 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  V  /\  T  C_  ( N `
 { X }
) )  ->  ( T  e.  S  <->  T  e.  ran  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152   {csn 3640   ran crn 4690    Fn wfn 5250   ` cfv 5255   Basecbs 13148   0gc0g 13400   0.cp0 14143   LSubSpclss 15689   LSpanclspn 15728   LVecclvec 15855   OPcops 29362   HLchlt 29540   LHypclh 30173   DVecHcdvh 31268   DIsoHcdih 31418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-undef 6298  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-cntz 14793  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-drng 15514  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lvec 15856  df-lsatoms 29166  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944  df-edring 30946  df-disoa 31219  df-dvech 31269  df-dib 31329  df-dic 31363  df-dih 31419
  Copyright terms: Public domain W3C validator