Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem13N Unicode version

Theorem dihmeetlem13N 31436
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem13.b  |-  B  =  ( Base `  K
)
dihmeetlem13.l  |-  .<_  =  ( le `  K )
dihmeetlem13.j  |-  .\/  =  ( join `  K )
dihmeetlem13.a  |-  A  =  ( Atoms `  K )
dihmeetlem13.h  |-  H  =  ( LHyp `  K
)
dihmeetlem13.p  |-  P  =  ( ( oc `  K ) `  W
)
dihmeetlem13.t  |-  T  =  ( ( LTrn `  K
) `  W )
dihmeetlem13.e  |-  E  =  ( ( TEndo `  K
) `  W )
dihmeetlem13.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
dihmeetlem13.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihmeetlem13.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihmeetlem13.z  |-  .0.  =  ( 0g `  U )
dihmeetlem13.f  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
dihmeetlem13.g  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
Assertion
Ref Expression
dihmeetlem13N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( I `  Q
)  i^i  ( I `  R ) )  =  {  .0.  } )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    P, h    Q, h    R, h    T, h   
h, W
Allowed substitution hints:    U( h)    E( h)    F( h)    G( h)    I( h)    .\/ ( h)    O( h)    .0. (
h)

Proof of Theorem dihmeetlem13N
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihmeetlem13.h . . . . . 6  |-  H  =  ( LHyp `  K
)
2 dihmeetlem13.i . . . . . 6  |-  I  =  ( ( DIsoH `  K
) `  W )
31, 2dihvalrel 31396 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  Q ) )
433ad2ant1 978 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  Rel  ( I `  Q
) )
5 relin1 4934 . . . 4  |-  ( Rel  ( I `  Q
)  ->  Rel  ( ( I `  Q )  i^i  ( I `  R ) ) )
64, 5syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  Rel  ( ( I `  Q )  i^i  (
I `  R )
) )
7 elin 3475 . . . . . 6  |-  ( <.
f ,  s >.  e.  ( ( I `  Q )  i^i  (
I `  R )
)  <->  ( <. f ,  s >.  e.  ( I `  Q )  /\  <. f ,  s
>.  e.  ( I `  R ) ) )
8 simp1 957 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( K  e.  HL  /\  W  e.  H ) )
9 simp2l 983 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
10 dihmeetlem13.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
11 dihmeetlem13.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
12 dihmeetlem13.p . . . . . . . . 9  |-  P  =  ( ( oc `  K ) `  W
)
13 dihmeetlem13.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
14 dihmeetlem13.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
15 dihmeetlem13.f . . . . . . . . 9  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
16 vex 2904 . . . . . . . . 9  |-  f  e. 
_V
17 vex 2904 . . . . . . . . 9  |-  s  e. 
_V
1810, 11, 1, 12, 13, 14, 2, 15, 16, 17dihopelvalcqat 31363 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. f ,  s
>.  e.  ( I `  Q )  <->  ( f  =  ( s `  F )  /\  s  e.  E ) ) )
198, 9, 18syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( I `  Q
)  <->  ( f  =  ( s `  F
)  /\  s  e.  E ) ) )
20 simp2r 984 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
21 dihmeetlem13.g . . . . . . . . 9  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
2210, 11, 1, 12, 13, 14, 2, 21, 16, 17dihopelvalcqat 31363 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( <. f ,  s
>.  e.  ( I `  R )  <->  ( f  =  ( s `  G )  /\  s  e.  E ) ) )
238, 20, 22syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( I `  R
)  <->  ( f  =  ( s `  G
)  /\  s  e.  E ) ) )
2419, 23anbi12d 692 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( <. f ,  s
>.  e.  ( I `  Q )  /\  <. f ,  s >.  e.  ( I `  R ) )  <->  ( ( f  =  ( s `  F )  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) ) )
257, 24syl5bb 249 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( ( I `  Q )  i^i  (
I `  R )
)  <->  ( ( f  =  ( s `  F )  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) ) )
26 simprll 739 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  f  =  ( s `  F ) )
27 simpl3 962 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  Q  =/=  R )
28 fveq1 5669 . . . . . . . . . . . . 13  |-  ( F  =  G  ->  ( F `  P )  =  ( G `  P ) )
29 simpl1 960 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3010, 11, 1, 12lhpocnel2 30135 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3129, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
32 simpl2l 1010 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3310, 11, 1, 13, 15ltrniotaval 30697 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( F `  P )  =  Q )
3429, 31, 32, 33syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( F `  P )  =  Q )
35 simpl2r 1011 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
3610, 11, 1, 13, 21ltrniotaval 30697 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( G `  P )  =  R )
3729, 31, 35, 36syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( G `  P )  =  R )
3834, 37eqeq12d 2403 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  (
( F `  P
)  =  ( G `
 P )  <->  Q  =  R ) )
3928, 38syl5ib 211 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( F  =  G  ->  Q  =  R ) )
4039necon3d 2590 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( Q  =/=  R  ->  F  =/=  G ) )
4127, 40mpd 15 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  F  =/=  G )
42 simp2ll 1024 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  f  =  ( s `  F
) )
43 simp2rl 1026 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  f  =  ( s `  G
) )
4442, 43eqtr3d 2423 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( s `  F )  =  ( s `  G ) )
45 simp11 987 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( K  e.  HL  /\  W  e.  H ) )
46 simp2rr 1027 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  s  e.  E )
47 simp3 959 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  s  =/=  O )
4845, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
49 simp12l 1070 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5010, 11, 1, 13, 15ltrniotacl 30695 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
5145, 48, 49, 50syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  F  e.  T )
52 simp12r 1071 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5310, 11, 1, 13, 21ltrniotacl 30695 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
5445, 48, 52, 53syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  G  e.  T )
55 dihmeetlem13.b . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  K
)
56 dihmeetlem13.o . . . . . . . . . . . . . . 15  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
5755, 1, 13, 14, 56tendospcanN 31140 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  s  =/= 
O )  /\  ( F  e.  T  /\  G  e.  T )
)  ->  ( (
s `  F )  =  ( s `  G )  <->  F  =  G ) )
5845, 46, 47, 51, 54, 57syl122anc 1193 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( (
s `  F )  =  ( s `  G )  <->  F  =  G ) )
5944, 58mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  F  =  G )
60593expia 1155 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  (
s  =/=  O  ->  F  =  G )
)
6160necon1d 2621 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( F  =/=  G  ->  s  =  O ) )
6241, 61mpd 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  s  =  O )
6362fveq1d 5672 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  (
s `  F )  =  ( O `  F ) )
6429, 31, 32, 50syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  F  e.  T )
6556, 55tendo02 30903 . . . . . . . . 9  |-  ( F  e.  T  ->  ( O `  F )  =  (  _I  |`  B ) )
6664, 65syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( O `  F )  =  (  _I  |`  B ) )
6726, 63, 663eqtrd 2425 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  f  =  (  _I  |`  B ) )
6867, 62jca 519 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  (
f  =  (  _I  |`  B )  /\  s  =  O ) )
6968ex 424 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  ->  ( f  =  (  _I  |`  B )  /\  s  =  O ) ) )
7025, 69sylbid 207 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( ( I `  Q )  i^i  (
I `  R )
)  ->  ( f  =  (  _I  |`  B )  /\  s  =  O ) ) )
71 dihmeetlem13.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
72 dihmeetlem13.z . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
7355, 1, 13, 71, 72, 56dvh0g 31228 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  =  <. (  _I  |`  B ) ,  O >. )
74733ad2ant1 978 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  .0.  =  <. (  _I  |`  B ) ,  O >. )
7574sneqd 3772 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  {  .0.  }  =  { <. (  _I  |`  B ) ,  O >. } )
7675eleq2d 2456 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  {  .0.  }  <->  <. f ,  s >.  e.  { <. (  _I  |`  B ) ,  O >. } ) )
77 opex 4370 . . . . . . 7  |-  <. f ,  s >.  e.  _V
7877elsnc 3782 . . . . . 6  |-  ( <.
f ,  s >.  e.  { <. (  _I  |`  B ) ,  O >. }  <->  <. f ,  s >.  =  <. (  _I  |`  B ) ,  O >. )
7916, 17opth 4378 . . . . . 6  |-  ( <.
f ,  s >.  =  <. (  _I  |`  B ) ,  O >.  <->  ( f  =  (  _I  |`  B )  /\  s  =  O ) )
8078, 79bitr2i 242 . . . . 5  |-  ( ( f  =  (  _I  |`  B )  /\  s  =  O )  <->  <. f ,  s >.  e.  { <. (  _I  |`  B ) ,  O >. } )
8176, 80syl6rbbr 256 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( f  =  (  _I  |`  B )  /\  s  =  O
)  <->  <. f ,  s
>.  e.  {  .0.  }
) )
8270, 81sylibd 206 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( ( I `  Q )  i^i  (
I `  R )
)  ->  <. f ,  s >.  e.  {  .0.  } ) )
836, 82relssdv 4910 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( I `  Q
)  i^i  ( I `  R ) )  C_  {  .0.  } )
841, 71, 8dvhlmod 31227 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  U  e.  LMod )
85 simp2ll 1024 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  Q  e.  A )
8655, 11atbase 29406 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
8785, 86syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  Q  e.  B )
88 eqid 2389 . . . . . 6  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
8955, 1, 2, 71, 88dihlss 31367 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Q  e.  B
)  ->  ( I `  Q )  e.  (
LSubSp `  U ) )
908, 87, 89syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
I `  Q )  e.  ( LSubSp `  U )
)
91 simp2rl 1026 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  R  e.  A )
9255, 11atbase 29406 . . . . . 6  |-  ( R  e.  A  ->  R  e.  B )
9391, 92syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  R  e.  B )
9455, 1, 2, 71, 88dihlss 31367 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  R  e.  B
)  ->  ( I `  R )  e.  (
LSubSp `  U ) )
958, 93, 94syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
I `  R )  e.  ( LSubSp `  U )
)
9688lssincl 15970 . . . 4  |-  ( ( U  e.  LMod  /\  (
I `  Q )  e.  ( LSubSp `  U )  /\  ( I `  R
)  e.  ( LSubSp `  U ) )  -> 
( ( I `  Q )  i^i  (
I `  R )
)  e.  ( LSubSp `  U ) )
9784, 90, 95, 96syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( I `  Q
)  i^i  ( I `  R ) )  e.  ( LSubSp `  U )
)
9872, 88lss0ss 15954 . . 3  |-  ( ( U  e.  LMod  /\  (
( I `  Q
)  i^i  ( I `  R ) )  e.  ( LSubSp `  U )
)  ->  {  .0.  } 
C_  ( ( I `
 Q )  i^i  ( I `  R
) ) )
9984, 97, 98syl2anc 643 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  {  .0.  } 
C_  ( ( I `
 Q )  i^i  ( I `  R
) ) )
10083, 99eqssd 3310 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( I `  Q
)  i^i  ( I `  R ) )  =  {  .0.  } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552    i^i cin 3264    C_ wss 3265   {csn 3759   <.cop 3762   class class class wbr 4155    e. cmpt 4209    _I cid 4436    |` cres 4822   Rel wrel 4825   ` cfv 5396   iota_crio 6480   Basecbs 13398   lecple 13465   occoc 13466   0gc0g 13652   joincjn 14330   LModclmod 15879   LSubSpclss 15937   Atomscatm 29380   HLchlt 29467   LHypclh 30100   LTrncltrn 30217   TEndoctendo 30868   DVecHcdvh 31195   DIsoHcdih 31345
This theorem is referenced by:  dihmeetlem15N  31438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-tpos 6417  df-undef 6481  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-sca 13474  df-vsca 13475  df-0g 13656  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-mnd 14619  df-submnd 14668  df-grp 14741  df-minusg 14742  df-sbg 14743  df-subg 14870  df-cntz 15045  df-lsm 15199  df-cmn 15343  df-abl 15344  df-mgp 15578  df-rng 15592  df-ur 15594  df-oppr 15657  df-dvdsr 15675  df-unit 15676  df-invr 15706  df-dvr 15717  df-drng 15766  df-lmod 15881  df-lss 15938  df-lsp 15977  df-lvec 16104  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-llines 29614  df-lplanes 29615  df-lvols 29616  df-lines 29617  df-psubsp 29619  df-pmap 29620  df-padd 29912  df-lhyp 30104  df-laut 30105  df-ldil 30220  df-ltrn 30221  df-trl 30275  df-tendo 30871  df-edring 30873  df-disoa 31146  df-dvech 31196  df-dib 31256  df-dic 31290  df-dih 31346
  Copyright terms: Public domain W3C validator