Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem1N Unicode version

Theorem dihmeetlem1N 31407
Description: Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem5a.b  |-  B  =  ( Base `  K
)
dihglblem5a.m  |-  ./\  =  ( meet `  K )
dihglblem5a.h  |-  H  =  ( LHyp `  K
)
dihglblem5a.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihglblem5a.l  |-  .<_  =  ( le `  K )
dihglblem5a.j  |-  .\/  =  ( join `  K )
dihglblem5a.a  |-  A  =  ( Atoms `  K )
dihglblem5a.p  |-  P  =  ( ( oc `  K ) `  W
)
dihglblem5a.t  |-  T  =  ( ( LTrn `  K
) `  W )
dihglblem5a.r  |-  R  =  ( ( trL `  K
) `  W )
dihglblem5a.e  |-  E  =  ( ( TEndo `  K
) `  W )
dihglblem5a.g  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  q )
dihglblem5a.o  |-  .0.  =  ( h  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
dihmeetlem1N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( I `  ( X  ./\  Y ) )  =  ( ( I `  X )  i^i  ( I `  Y ) ) )
Distinct variable groups:    ./\ , q    h, q,  .<_    A, h, q    B, h, q    h, H, q   
I, q    h, K, q    P, h    T, h   
h, W, q    X, q    Y, q
Allowed substitution hints:    P( q)    R( h, q)    T( q)    E( h, q)    G( h, q)    I( h)    .\/ ( h, q)    ./\ (
h)    X( h)    Y( h)    .0. (
h, q)

Proof of Theorem dihmeetlem1N
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 981 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  K  e.  HL )
2 hllat 29480 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  K  e.  Lat )
4 simp2l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  X  e.  B
)
5 simp3l 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  Y  e.  B
)
6 dihglblem5a.b . . . . . 6  |-  B  =  ( Base `  K
)
7 dihglblem5a.l . . . . . 6  |-  .<_  =  ( le `  K )
8 dihglblem5a.m . . . . . 6  |-  ./\  =  ( meet `  K )
96, 7, 8latmle1 14434 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  .<_  X )
103, 4, 5, 9syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( X  ./\  Y )  .<_  X )
11 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
126, 8latmcl 14409 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
133, 4, 5, 12syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( X  ./\  Y )  e.  B )
14 dihglblem5a.h . . . . . 6  |-  H  =  ( LHyp `  K
)
15 dihglblem5a.i . . . . . 6  |-  I  =  ( ( DIsoH `  K
) `  W )
166, 7, 14, 15dihord 31381 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  ./\  Y )  e.  B  /\  X  e.  B )  ->  ( ( I `  ( X  ./\  Y ) )  C_  ( I `  X )  <->  ( X  ./\ 
Y )  .<_  X ) )
1711, 13, 4, 16syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( ( I `
 ( X  ./\  Y ) )  C_  (
I `  X )  <->  ( X  ./\  Y )  .<_  X ) )
1810, 17mpbird 224 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( I `  ( X  ./\  Y ) )  C_  ( I `  X ) )
196, 7, 8latmle2 14435 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  .<_  Y )
203, 4, 5, 19syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( X  ./\  Y )  .<_  Y )
216, 7, 14, 15dihord 31381 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  ./\  Y )  e.  B  /\  Y  e.  B )  ->  ( ( I `  ( X  ./\  Y ) )  C_  ( I `  Y )  <->  ( X  ./\ 
Y )  .<_  Y ) )
2211, 13, 5, 21syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( ( I `
 ( X  ./\  Y ) )  C_  (
I `  Y )  <->  ( X  ./\  Y )  .<_  Y ) )
2320, 22mpbird 224 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( I `  ( X  ./\  Y ) )  C_  ( I `  Y ) )
2418, 23ssind 3510 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( I `  ( X  ./\  Y ) )  C_  ( (
I `  X )  i^i  ( I `  Y
) ) )
2514, 15dihvalrel 31396 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  X ) )
26 relin1 4934 . . . . 5  |-  ( Rel  ( I `  X
)  ->  Rel  ( ( I `  X )  i^i  ( I `  Y ) ) )
2725, 26syl 16 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( ( I `
 X )  i^i  ( I `  Y
) ) )
28273ad2ant1 978 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  Rel  ( (
I `  X )  i^i  ( I `  Y
) ) )
29 elin 3475 . . . 4  |-  ( <.
f ,  s >.  e.  ( ( I `  X )  i^i  (
I `  Y )
)  <->  ( <. f ,  s >.  e.  ( I `  X )  /\  <. f ,  s
>.  e.  ( I `  Y ) ) )
30 dihglblem5a.j . . . . . . 7  |-  .\/  =  ( join `  K )
31 dihglblem5a.a . . . . . . 7  |-  A  =  ( Atoms `  K )
326, 7, 30, 8, 31, 14lhpmcvr2 30140 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. q  e.  A  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )
33323adant3 977 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  E. q  e.  A  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )
34 simpl1 960 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
35 simpl2 961 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
36 simprl 733 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  q  e.  A )
37 simprrl 741 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  -.  q  .<_  W )
3836, 37jca 519 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  (
q  e.  A  /\  -.  q  .<_  W ) )
39 simprrr 742 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  (
q  .\/  ( X  ./\ 
W ) )  =  X )
40 dihglblem5a.p . . . . . . . . 9  |-  P  =  ( ( oc `  K ) `  W
)
41 dihglblem5a.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
42 dihglblem5a.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
43 dihglblem5a.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
44 dihglblem5a.g . . . . . . . . 9  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  q )
45 vex 2904 . . . . . . . . 9  |-  f  e. 
_V
46 vex 2904 . . . . . . . . 9  |-  s  e. 
_V
476, 7, 30, 8, 31, 14, 40, 41, 42, 43, 15, 44, 45, 46dihopelvalc 31366 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  (
( q  e.  A  /\  -.  q  .<_  W )  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( <. f ,  s >.  e.  ( I `  X )  <-> 
( ( f  e.  T  /\  s  e.  E )  /\  ( R `  ( f  o.  `' ( s `  G ) ) ) 
.<_  X ) ) )
4834, 35, 38, 39, 47syl112anc 1188 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  ( <. f ,  s >.  e.  ( I `  X
)  <->  ( ( f  e.  T  /\  s  e.  E )  /\  ( R `  ( f  o.  `' ( s `  G ) ) ) 
.<_  X ) ) )
49 simpr 448 . . . . . . 7  |-  ( ( ( f  e.  T  /\  s  e.  E
)  /\  ( R `  ( f  o.  `' ( s `  G
) ) )  .<_  X )  ->  ( R `  ( f  o.  `' ( s `  G ) ) ) 
.<_  X )
5048, 49syl6bi 220 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  ( <. f ,  s >.  e.  ( I `  X
)  ->  ( R `  ( f  o.  `' ( s `  G
) ) )  .<_  X ) )
51 simpl3 962 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  ( Y  e.  B  /\  Y  .<_  W ) )
52 dihglblem5a.o . . . . . . . . 9  |-  .0.  =  ( h  e.  T  |->  (  _I  |`  B ) )
536, 7, 14, 41, 42, 52, 15dihopelvalbN 31355 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( <. f ,  s >.  e.  ( I `  Y
)  <->  ( ( f  e.  T  /\  ( R `  f )  .<_  Y )  /\  s  =  .0.  ) ) )
5434, 51, 53syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  ( <. f ,  s >.  e.  ( I `  Y
)  <->  ( ( f  e.  T  /\  ( R `  f )  .<_  Y )  /\  s  =  .0.  ) ) )
5554biimpd 199 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  ( <. f ,  s >.  e.  ( I `  Y
)  ->  ( (
f  e.  T  /\  ( R `  f ) 
.<_  Y )  /\  s  =  .0.  ) ) )
56 simprll 739 . . . . . . . . . 10  |-  ( ( ( R `  (
f  o.  `' ( s `  G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) )  -> 
f  e.  T )
57563ad2ant3 980 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  f  e.  T
)
58 simp3rr 1031 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  s  =  .0.  )
5958fveq1d 5672 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( s `  G )  =  (  .0.  `  G )
)
60 simp11 987 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
617, 31, 14, 40lhpocnel2 30135 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6260, 61syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
63 simp2l 983 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  q  e.  A
)
64 simp2rl 1026 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  -.  q  .<_  W )
657, 31, 14, 41, 44ltrniotacl 30695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
q  e.  A  /\  -.  q  .<_  W ) )  ->  G  e.  T )
6660, 62, 63, 64, 65syl112anc 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  G  e.  T
)
6752, 6tendo02 30903 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  T  ->  (  .0.  `  G )  =  (  _I  |`  B ) )
6866, 67syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  (  .0.  `  G )  =  (  _I  |`  B )
)
6959, 68eqtrd 2421 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( s `  G )  =  (  _I  |`  B )
)
7069cnveqd 4990 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  `' ( s `
 G )  =  `' (  _I  |`  B ) )
71 cnvresid 5465 . . . . . . . . . . . . . . 15  |-  `' (  _I  |`  B )  =  (  _I  |`  B )
7270, 71syl6eq 2437 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  `' ( s `
 G )  =  (  _I  |`  B ) )
7372coeq2d 4977 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( f  o.  `' ( s `  G ) )  =  ( f  o.  (  _I  |`  B ) ) )
746, 14, 41ltrn1o 30240 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T
)  ->  f : B
-1-1-onto-> B )
7560, 57, 74syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  f : B -1-1-onto-> B
)
76 f1of 5616 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-onto-> B  ->  f : B
--> B )
77 fcoi1 5559 . . . . . . . . . . . . . 14  |-  ( f : B --> B  -> 
( f  o.  (  _I  |`  B ) )  =  f )
7875, 76, 773syl 19 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( f  o.  (  _I  |`  B ) )  =  f )
7973, 78eqtrd 2421 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( f  o.  `' ( s `  G ) )  =  f )
8079fveq2d 5674 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( R `  ( f  o.  `' ( s `  G
) ) )  =  ( R `  f
) )
81 simp3l 985 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( R `  ( f  o.  `' ( s `  G
) ) )  .<_  X )
8280, 81eqbrtrrd 4177 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( R `  f )  .<_  X )
83 simprlr 740 . . . . . . . . . . 11  |-  ( ( ( R `  (
f  o.  `' ( s `  G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) )  -> 
( R `  f
)  .<_  Y )
84833ad2ant3 980 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( R `  f )  .<_  Y )
85 simp11l 1068 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  K  e.  HL )
8685, 2syl 16 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  K  e.  Lat )
876, 14, 41, 42trlcl 30280 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T
)  ->  ( R `  f )  e.  B
)
8860, 57, 87syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( R `  f )  e.  B
)
89 simp12l 1070 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  X  e.  B
)
90 simp13l 1072 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  Y  e.  B
)
916, 7, 8latlem12 14436 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( ( R `  f )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( R `  f )  .<_  X  /\  ( R `  f ) 
.<_  Y )  <->  ( R `  f )  .<_  ( X 
./\  Y ) ) )
9286, 88, 89, 90, 91syl13anc 1186 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( ( ( R `  f ) 
.<_  X  /\  ( R `
 f )  .<_  Y )  <->  ( R `  f )  .<_  ( X 
./\  Y ) ) )
9382, 84, 92mpbi2and 888 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( R `  f )  .<_  ( X 
./\  Y ) )
9457, 93jca 519 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( f  e.  T  /\  ( R `
 f )  .<_  ( X  ./\  Y ) ) )
9586, 89, 90, 12syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( X  ./\  Y )  e.  B )
96 simp11r 1069 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  W  e.  H
)
976, 14lhpbase 30114 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  B )
9896, 97syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  W  e.  B
)
9986, 89, 90, 19syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( X  ./\  Y )  .<_  Y )
100 simp13r 1073 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  Y  .<_  W )
1016, 7, 86, 95, 90, 98, 99, 100lattrd 14416 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( X  ./\  Y )  .<_  W )
1026, 7, 14, 41, 42, 52, 15dihopelvalbN 31355 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X 
./\  Y )  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  -> 
( <. f ,  s
>.  e.  ( I `  ( X  ./\  Y ) )  <->  ( ( f  e.  T  /\  ( R `  f )  .<_  ( X  ./\  Y
) )  /\  s  =  .0.  ) ) )
10360, 95, 101, 102syl12anc 1182 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  ( <. f ,  s >.  e.  ( I `  ( X 
./\  Y ) )  <-> 
( ( f  e.  T  /\  ( R `
 f )  .<_  ( X  ./\  Y ) )  /\  s  =  .0.  ) ) )
10494, 58, 103mpbir2and 889 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) )  /\  ( ( R `  ( f  o.  `' ( s `
 G ) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `
 f )  .<_  Y )  /\  s  =  .0.  ) ) )  ->  <. f ,  s
>.  e.  ( I `  ( X  ./\  Y ) ) )
1051043expia 1155 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  (
( ( R `  ( f  o.  `' ( s `  G
) ) )  .<_  X  /\  ( ( f  e.  T  /\  ( R `  f )  .<_  Y )  /\  s  =  .0.  ) )  ->  <. f ,  s >.  e.  ( I `  ( X  ./\  Y ) ) ) )
10650, 55, 105syl2and 470 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  (
q  e.  A  /\  ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )  ->  (
( <. f ,  s
>.  e.  ( I `  X )  /\  <. f ,  s >.  e.  ( I `  Y ) )  ->  <. f ,  s >.  e.  (
I `  ( X  ./\ 
Y ) ) ) )
10733, 106rexlimddv 2779 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( ( <.
f ,  s >.  e.  ( I `  X
)  /\  <. f ,  s >.  e.  (
I `  Y )
)  ->  <. f ,  s >.  e.  (
I `  ( X  ./\ 
Y ) ) ) )
10829, 107syl5bi 209 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( <. f ,  s >.  e.  ( ( I `  X
)  i^i  ( I `  Y ) )  ->  <. f ,  s >.  e.  ( I `  ( X  ./\  Y ) ) ) )
10928, 108relssdv 4910 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( ( I `
 X )  i^i  ( I `  Y
) )  C_  (
I `  ( X  ./\ 
Y ) ) )
11024, 109eqssd 3310 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( I `  ( X  ./\  Y ) )  =  ( ( I `  X )  i^i  ( I `  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2652    i^i cin 3264    C_ wss 3265   <.cop 3762   class class class wbr 4155    e. cmpt 4209    _I cid 4436   `'ccnv 4819    |` cres 4822    o. ccom 4824   Rel wrel 4825   -->wf 5392   -1-1-onto->wf1o 5395   ` cfv 5396  (class class class)co 6022   iota_crio 6480   Basecbs 13398   lecple 13465   occoc 13466   joincjn 14330   meetcmee 14331   Latclat 14403   Atomscatm 29380   HLchlt 29467   LHypclh 30100   LTrncltrn 30217   trLctrl 30274   TEndoctendo 30868   DIsoHcdih 31345
This theorem is referenced by:  dihmeetbN  31420
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-tpos 6417  df-undef 6481  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-sca 13474  df-vsca 13475  df-0g 13656  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-mnd 14619  df-submnd 14668  df-grp 14741  df-minusg 14742  df-sbg 14743  df-subg 14870  df-cntz 15045  df-lsm 15199  df-cmn 15343  df-abl 15344  df-mgp 15578  df-rng 15592  df-ur 15594  df-oppr 15657  df-dvdsr 15675  df-unit 15676  df-invr 15706  df-dvr 15717  df-drng 15766  df-lmod 15881  df-lss 15938  df-lsp 15977  df-lvec 16104  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-llines 29614  df-lplanes 29615  df-lvols 29616  df-lines 29617  df-psubsp 29619  df-pmap 29620  df-padd 29912  df-lhyp 30104  df-laut 30105  df-ldil 30220  df-ltrn 30221  df-trl 30275  df-tendo 30871  df-edring 30873  df-disoa 31146  df-dvech 31196  df-dib 31256  df-dic 31290  df-dih 31346
  Copyright terms: Public domain W3C validator