Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem6 Unicode version

Theorem dihmeetlem6 31499
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.)
Hypotheses
Ref Expression
dihmeetlem6.b  |-  B  =  ( Base `  K
)
dihmeetlem6.l  |-  .<_  =  ( le `  K )
dihmeetlem6.h  |-  H  =  ( LHyp `  K
)
dihmeetlem6.j  |-  .\/  =  ( join `  K )
dihmeetlem6.m  |-  ./\  =  ( meet `  K )
dihmeetlem6.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dihmeetlem6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  -.  ( X  ./\  ( Y  .\/  Q ) )  .<_  W )

Proof of Theorem dihmeetlem6
StepHypRef Expression
1 simprlr 739 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  -.  Q  .<_  W )
2 simpl1l 1006 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  K  e.  HL )
3 hllat 29553 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  K  e.  Lat )
5 simpl2 959 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  X  e.  B )
6 simpl3 960 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  Y  e.  B )
7 dihmeetlem6.b . . . . . . 7  |-  B  =  ( Base `  K
)
8 dihmeetlem6.m . . . . . . 7  |-  ./\  =  ( meet `  K )
97, 8latmcl 14157 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
104, 5, 6, 9syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( X  ./\ 
Y )  e.  B
)
11 simprll 738 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  Q  e.  A )
12 dihmeetlem6.a . . . . . . 7  |-  A  =  ( Atoms `  K )
137, 12atbase 29479 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
1411, 13syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  Q  e.  B )
15 simpl1r 1007 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  W  e.  H )
16 dihmeetlem6.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
177, 16lhpbase 30187 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
1815, 17syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  W  e.  B )
19 dihmeetlem6.l . . . . . 6  |-  .<_  =  ( le `  K )
20 dihmeetlem6.j . . . . . 6  |-  .\/  =  ( join `  K )
217, 19, 20latjle12 14168 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( X  ./\  Y )  e.  B  /\  Q  e.  B  /\  W  e.  B )
)  ->  ( (
( X  ./\  Y
)  .<_  W  /\  Q  .<_  W )  <->  ( ( X  ./\  Y )  .\/  Q )  .<_  W )
)
224, 10, 14, 18, 21syl13anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( (
( X  ./\  Y
)  .<_  W  /\  Q  .<_  W )  <->  ( ( X  ./\  Y )  .\/  Q )  .<_  W )
)
23 simpr 447 . . . 4  |-  ( ( ( X  ./\  Y
)  .<_  W  /\  Q  .<_  W )  ->  Q  .<_  W )
2422, 23syl6bir 220 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( (
( X  ./\  Y
)  .\/  Q )  .<_  W  ->  Q  .<_  W ) )
251, 24mtod 168 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  -.  (
( X  ./\  Y
)  .\/  Q )  .<_  W )
26 simprr 733 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  Q  .<_  X )
277, 19, 20, 8, 12dihmeetlem5 31498 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Q  e.  A  /\  Q  .<_  X ) )  ->  ( X  ./\  ( Y  .\/  Q
) )  =  ( ( X  ./\  Y
)  .\/  Q )
)
282, 5, 6, 11, 26, 27syl32anc 1190 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( X  ./\  ( Y  .\/  Q
) )  =  ( ( X  ./\  Y
)  .\/  Q )
)
2928breq1d 4033 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( ( X  ./\  ( Y  .\/  Q ) )  .<_  W  <->  ( ( X  ./\  Y )  .\/  Q )  .<_  W )
)
3025, 29mtbird 292 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  -.  ( X  ./\  ( Y  .\/  Q ) )  .<_  W )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  dihjatc1  31501  dihmeetlem10N  31506
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177
  Copyright terms: Public domain W3C validator