Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopellsm Structured version   Unicode version

Theorem dihopellsm 31954
Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.)
Hypotheses
Ref Expression
dihopellsm.b  |-  B  =  ( Base `  K
)
dihopellsm.h  |-  H  =  ( LHyp `  K
)
dihopellsm.t  |-  T  =  ( ( LTrn `  K
) `  W )
dihopellsm.e  |-  E  =  ( ( TEndo `  K
) `  W )
dihopellsm.a  |-  A  =  ( v  e.  E ,  w  e.  E  |->  ( i  e.  T  |->  ( ( v `  i )  o.  (
w `  i )
) ) )
dihopellsm.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihopellsm.l  |-  L  =  ( LSubSp `  U )
dihopellsm.p  |-  .(+)  =  (
LSSum `  U )
dihopellsm.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihopellsm.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dihopellsm.x  |-  ( ph  ->  X  e.  B )
dihopellsm.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
dihopellsm  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .(+)  ( I `  Y ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) ) )
Distinct variable groups:    w, v, E    g, h, t, u, F    g, i, H, t    g, I, h, t, u    v, g, w, K, i, t    S, g, h, t, u    U, g, h, t, u   
g, W, i, t, v, w    g, X, h, t, u    g, Y, h, t, u    ph, g, h, t, u
Allowed substitution hints:    ph( w, v, i)    A( w, v, u, t, g, h, i)    B( w, v, u, t, g, h, i)    .(+) ( w, v, u, t, g, h, i)    S( w, v, i)    T( w, v, u, t, g, h, i)    U( w, v, i)    E( u, t, g, h, i)    F( w, v, i)    H( w, v, u, h)    I( w, v, i)    K( u, h)    L( w, v, u, t, g, h, i)    W( u, h)    X( w, v, i)    Y( w, v, i)

Proof of Theorem dihopellsm
StepHypRef Expression
1 dihopellsm.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dihopellsm.x . . . 4  |-  ( ph  ->  X  e.  B )
3 dihopellsm.b . . . . 5  |-  B  =  ( Base `  K
)
4 dihopellsm.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 dihopellsm.i . . . . 5  |-  I  =  ( ( DIsoH `  K
) `  W )
6 dihopellsm.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
7 eqid 2435 . . . . 5  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
83, 4, 5, 6, 7dihlss 31949 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  ( I `  X )  e.  (
LSubSp `  U ) )
91, 2, 8syl2anc 643 . . 3  |-  ( ph  ->  ( I `  X
)  e.  ( LSubSp `  U ) )
10 dihopellsm.y . . . 4  |-  ( ph  ->  Y  e.  B )
113, 4, 5, 6, 7dihlss 31949 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  B
)  ->  ( I `  Y )  e.  (
LSubSp `  U ) )
121, 10, 11syl2anc 643 . . 3  |-  ( ph  ->  ( I `  Y
)  e.  ( LSubSp `  U ) )
13 eqid 2435 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
14 dihopellsm.p . . . 4  |-  .(+)  =  (
LSSum `  U )
154, 6, 13, 7, 14dvhopellsm 31816 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  X )  e.  (
LSubSp `  U )  /\  ( I `  Y
)  e.  ( LSubSp `  U ) )  -> 
( <. F ,  S >.  e.  ( ( I `
 X )  .(+)  ( I `  Y ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. ) ) ) )
161, 9, 12, 15syl3anc 1184 . 2  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .(+)  ( I `  Y ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. ) ) ) )
17 dihopellsm.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
18 dihopellsm.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
191adantr 452 . . . . . . 7  |-  ( (
ph  /\  <. g ,  t >.  e.  (
I `  X )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
202adantr 452 . . . . . . 7  |-  ( (
ph  /\  <. g ,  t >.  e.  (
I `  X )
)  ->  X  e.  B )
21 simpr 448 . . . . . . 7  |-  ( (
ph  /\  <. g ,  t >.  e.  (
I `  X )
)  ->  <. g ,  t >.  e.  (
I `  X )
)
223, 4, 17, 18, 5, 19, 20, 21dihopcl 31952 . . . . . 6  |-  ( (
ph  /\  <. g ,  t >.  e.  (
I `  X )
)  ->  ( g  e.  T  /\  t  e.  E ) )
231adantr 452 . . . . . . 7  |-  ( (
ph  /\  <. h ,  u >.  e.  (
I `  Y )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2410adantr 452 . . . . . . 7  |-  ( (
ph  /\  <. h ,  u >.  e.  (
I `  Y )
)  ->  Y  e.  B )
25 simpr 448 . . . . . . 7  |-  ( (
ph  /\  <. h ,  u >.  e.  (
I `  Y )
)  ->  <. h ,  u >.  e.  (
I `  Y )
)
263, 4, 17, 18, 5, 23, 24, 25dihopcl 31952 . . . . . 6  |-  ( (
ph  /\  <. h ,  u >.  e.  (
I `  Y )
)  ->  ( h  e.  T  /\  u  e.  E ) )
2722, 26anim12dan 811 . . . . 5  |-  ( (
ph  /\  ( <. g ,  t >.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) ) )  ->  ( ( g  e.  T  /\  t  e.  E )  /\  (
h  e.  T  /\  u  e.  E )
) )
281adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
29 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( g  e.  T  /\  t  e.  E
) )
30 simprr 734 . . . . . . . 8  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( h  e.  T  /\  u  e.  E
) )
31 dihopellsm.a . . . . . . . . 9  |-  A  =  ( v  e.  E ,  w  e.  E  |->  ( i  e.  T  |->  ( ( v `  i )  o.  (
w `  i )
) ) )
324, 17, 18, 31, 6, 13dvhopvadd2 31793 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( g  e.  T  /\  t  e.  E )  /\  (
h  e.  T  /\  u  e.  E )
)  ->  ( <. g ,  t >. ( +g  `  U ) <.
h ,  u >. )  =  <. ( g  o.  h ) ,  ( t A u )
>. )
3328, 29, 30, 32syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( <. g ,  t
>. ( +g  `  U
) <. h ,  u >. )  =  <. (
g  o.  h ) ,  ( t A u ) >. )
3433eqeq2d 2446 . . . . . 6  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( <. F ,  S >.  =  ( <. g ,  t >. ( +g  `  U ) <.
h ,  u >. )  <->  <. F ,  S >.  = 
<. ( g  o.  h
) ,  ( t A u ) >.
) )
35 vex 2951 . . . . . . . 8  |-  g  e. 
_V
36 vex 2951 . . . . . . . 8  |-  h  e. 
_V
3735, 36coex 5405 . . . . . . 7  |-  ( g  o.  h )  e. 
_V
38 ovex 6098 . . . . . . 7  |-  ( t A u )  e. 
_V
3937, 38opth2 4430 . . . . . 6  |-  ( <. F ,  S >.  = 
<. ( g  o.  h
) ,  ( t A u ) >.  <->  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) )
4034, 39syl6bb 253 . . . . 5  |-  ( (
ph  /\  ( (
g  e.  T  /\  t  e.  E )  /\  ( h  e.  T  /\  u  e.  E
) ) )  -> 
( <. F ,  S >.  =  ( <. g ,  t >. ( +g  `  U ) <.
h ,  u >. )  <-> 
( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) )
4127, 40syldan 457 . . . 4  |-  ( (
ph  /\  ( <. g ,  t >.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) ) )  ->  ( <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. )  <-> 
( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) )
4241pm5.32da 623 . . 3  |-  ( ph  ->  ( ( ( <.
g ,  t >.  e.  ( I `  X
)  /\  <. h ,  u >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. ) )  <->  ( ( <.
g ,  t >.  e.  ( I `  X
)  /\  <. h ,  u >.  e.  (
I `  Y )
)  /\  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) ) )
43424exbidv 1640 . 2  |-  ( ph  ->  ( E. g E. t E. h E. u ( ( <.
g ,  t >.  e.  ( I `  X
)  /\  <. h ,  u >.  e.  (
I `  Y )
)  /\  <. F ,  S >.  =  ( <.
g ,  t >.
( +g  `  U )
<. h ,  u >. ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) ) )
4416, 43bitrd 245 1  |-  ( ph  ->  ( <. F ,  S >.  e.  ( ( I `
 X )  .(+)  ( I `  Y ) )  <->  E. g E. t E. h E. u ( ( <. g ,  t
>.  e.  ( I `  X )  /\  <. h ,  u >.  e.  ( I `  Y ) )  /\  ( F  =  ( g  o.  h )  /\  S  =  ( t A u ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   <.cop 3809    e. cmpt 4258    o. ccom 4874   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   Basecbs 13459   +g cplusg 13519   LSSumclsm 15258   LSubSpclss 15998   HLchlt 30049   LHypclh 30682   LTrncltrn 30799   TEndoctendo 31450   DVecHcdvh 31777   DIsoHcdih 31927
This theorem is referenced by:  dihjatcclem4  32120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-tpos 6471  df-undef 6535  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-n0 10212  df-z 10273  df-uz 10479  df-fz 11034  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-sca 13535  df-vsca 13536  df-0g 13717  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-p1 14459  df-lat 14465  df-clat 14527  df-mnd 14680  df-submnd 14729  df-grp 14802  df-minusg 14803  df-sbg 14804  df-subg 14931  df-cntz 15106  df-lsm 15260  df-cmn 15404  df-abl 15405  df-mgp 15639  df-rng 15653  df-ur 15655  df-oppr 15718  df-dvdsr 15736  df-unit 15737  df-invr 15767  df-dvr 15778  df-drng 15827  df-lmod 15942  df-lss 15999  df-lsp 16038  df-lvec 16165  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050  df-llines 30196  df-lplanes 30197  df-lvols 30198  df-lines 30199  df-psubsp 30201  df-pmap 30202  df-padd 30494  df-lhyp 30686  df-laut 30687  df-ldil 30802  df-ltrn 30803  df-trl 30857  df-tendo 31453  df-edring 31455  df-disoa 31728  df-dvech 31778  df-dib 31838  df-dic 31872  df-dih 31928
  Copyright terms: Public domain W3C validator