Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord6b Unicode version

Theorem dihord6b 31426
Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
Hypotheses
Ref Expression
dihord3.b  |-  B  =  ( Base `  K
)
dihord3.l  |-  .<_  =  ( le `  K )
dihord3.h  |-  H  =  ( LHyp `  K
)
dihord3.i  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihord6b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  X  .<_  Y )  ->  (
I `  X )  C_  ( I `  Y
) )

Proof of Theorem dihord6b
StepHypRef Expression
1 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  -.  X  .<_  W )
2 simp3r 986 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  Y  .<_  W )
3 simp1l 981 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  K  e.  HL )
4 hllat 29529 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  K  e.  Lat )
6 simp2l 983 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  X  e.  B
)
7 simp3l 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  Y  e.  B
)
8 simp1r 982 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  W  e.  H
)
9 dihord3.b . . . . . . . 8  |-  B  =  ( Base `  K
)
10 dihord3.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
119, 10lhpbase 30163 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  B )
128, 11syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  W  e.  B
)
13 dihord3.l . . . . . . 7  |-  .<_  =  ( le `  K )
149, 13lattr 14405 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  W  e.  B
) )  ->  (
( X  .<_  Y  /\  Y  .<_  W )  ->  X  .<_  W ) )
155, 6, 7, 12, 14syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( ( X 
.<_  Y  /\  Y  .<_  W )  ->  X  .<_  W ) )
162, 15mpan2d 656 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( X  .<_  Y  ->  X  .<_  W ) )
171, 16mtod 170 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  -.  X  .<_  Y )
1817pm2.21d 100 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  ->  ( X  .<_  Y  ->  ( I `  X )  C_  (
I `  Y )
) )
1918imp 419 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  Y  .<_  W ) )  /\  X  .<_  Y )  ->  (
I `  X )  C_  ( I `  Y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    C_ wss 3256   class class class wbr 4146   ` cfv 5387   Basecbs 13389   lecple 13456   Latclat 14394   HLchlt 29516   LHypclh 30149   DIsoHcdih 31394
This theorem is referenced by:  dihord  31430
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-iota 5351  df-fun 5389  df-fv 5395  df-ov 6016  df-poset 14323  df-lat 14395  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-lhyp 30153
  Copyright terms: Public domain W3C validator