Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dilfsetN Structured version   Unicode version

Theorem dilfsetN 30887
 Description: The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
dilset.a
dilset.s
dilset.w
dilset.m
dilset.l
Assertion
Ref Expression
dilfsetN
Distinct variable groups:   ,   ,,,   ,   ,
Allowed substitution hints:   (,)   (,,)   (,)   (,,)   (,)   (,,)

Proof of Theorem dilfsetN
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 2957 . 2
2 dilset.l . . 3
3 fveq2 5721 . . . . . 6
4 dilset.a . . . . . 6
53, 4syl6eqr 2486 . . . . 5
6 fveq2 5721 . . . . . . 7
7 dilset.m . . . . . . 7
86, 7syl6eqr 2486 . . . . . 6
9 fveq2 5721 . . . . . . . 8
10 dilset.s . . . . . . . 8
119, 10syl6eqr 2486 . . . . . . 7
12 fveq2 5721 . . . . . . . . . . 11
13 dilset.w . . . . . . . . . . 11
1412, 13syl6eqr 2486 . . . . . . . . . 10
1514fveq1d 5723 . . . . . . . . 9
1615sseq2d 3369 . . . . . . . 8
1716imbi1d 309 . . . . . . 7
1811, 17raleqbidv 2909 . . . . . 6
198, 18rabeqbidv 2944 . . . . 5
205, 19mpteq12dv 4280 . . . 4
21 df-dilN 30841 . . . 4
22 fvex 5735 . . . . . 6
234, 22eqeltri 2506 . . . . 5
2423mptex 5959 . . . 4
2520, 21, 24fvmpt 5799 . . 3
262, 25syl5eq 2480 . 2
271, 26syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  wral 2698  crab 2702  cvv 2949   wss 3313   cmpt 4259  cfv 5447  catm 29999  cpsubsp 30231  cwpointsN 30721  cpautN 30722  cdilN 30837 This theorem is referenced by:  dilsetN  30888 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pr 4396 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-dilN 30841
 Copyright terms: Public domain W3C validator