Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophren Unicode version

Theorem diophren 26896
Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
diophren  |-  ( ( S  e.  (Dioph `  N )  /\  M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) )
Distinct variable groups:    S, a    M, a    N, a    F, a

Proof of Theorem diophren
Dummy variables  b 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 10033 . . . . . 6  |-  ZZ  e.  _V
2 difexg 4162 . . . . . 6  |-  ( ZZ  e.  _V  ->  ( ZZ  \  NN )  e. 
_V )
31, 2ax-mp 8 . . . . 5  |-  ( ZZ 
\  NN )  e. 
_V
4 ominf 7075 . . . . . 6  |-  -.  om  e.  Fin
5 nnuz 10263 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
6 0p1e1 9839 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
76fveq2i 5528 . . . . . . . . . 10  |-  ( ZZ>= `  ( 0  +  1 ) )  =  (
ZZ>= `  1 )
85, 7eqtr4i 2306 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
98difeq2i 3291 . . . . . . . 8  |-  ( ZZ 
\  NN )  =  ( ZZ  \  ( ZZ>=
`  ( 0  +  1 ) ) )
10 0z 10035 . . . . . . . . 9  |-  0  e.  ZZ
11 lzenom 26849 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  (
0  +  1 ) ) )  ~~  om )
1210, 11ax-mp 8 . . . . . . . 8  |-  ( ZZ 
\  ( ZZ>= `  (
0  +  1 ) ) )  ~~  om
139, 12eqbrtri 4042 . . . . . . 7  |-  ( ZZ 
\  NN )  ~~  om
14 enfi 7079 . . . . . . 7  |-  ( ( ZZ  \  NN ) 
~~  om  ->  ( ( ZZ  \  NN )  e.  Fin  <->  om  e.  Fin ) )
1513, 14ax-mp 8 . . . . . 6  |-  ( ( ZZ  \  NN )  e.  Fin  <->  om  e.  Fin )
164, 15mtbir 290 . . . . 5  |-  -.  ( ZZ  \  NN )  e. 
Fin
17 incom 3361 . . . . . 6  |-  ( ( ZZ  \  NN )  i^i  NN )  =  ( NN  i^i  ( ZZ  \  NN ) )
18 disjdif 3526 . . . . . 6  |-  ( NN 
i^i  ( ZZ  \  NN ) )  =  (/)
1917, 18eqtri 2303 . . . . 5  |-  ( ( ZZ  \  NN )  i^i  NN )  =  (/)
203, 16, 19eldioph4b 26894 . . . 4  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  ( 1 ... N
) ) ) S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 } ) )
21 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... M ) ) )
22 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e. 
NN0 )  ->  F : ( 1 ... N ) --> ( 1 ... M ) )
2322ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  F :
( 1 ... N
) --> ( 1 ... M ) )
24 ovex 5883 . . . . . . . . . . . . 13  |-  ( 1 ... N )  e. 
_V
2524mapco2 26791 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  ->  ( a  o.  F )  e.  ( NN0  ^m  ( 1 ... N ) ) )
2621, 23, 25syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  ( a  o.  F )  e.  ( NN0  ^m  ( 1 ... N ) ) )
27 uneq1 3322 . . . . . . . . . . . . . . 15  |-  ( c  =  ( a  o.  F )  ->  (
c  u.  d )  =  ( ( a  o.  F )  u.  d ) )
2827fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( c  =  ( a  o.  F )  ->  (
b `  ( c  u.  d ) )  =  ( b `  (
( a  o.  F
)  u.  d ) ) )
2928eqeq1d 2291 . . . . . . . . . . . . 13  |-  ( c  =  ( a  o.  F )  ->  (
( b `  (
c  u.  d ) )  =  0  <->  (
b `  ( (
a  o.  F )  u.  d ) )  =  0 ) )
3029rexbidv 2564 . . . . . . . . . . . 12  |-  ( c  =  ( a  o.  F )  ->  ( E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `
 ( c  u.  d ) )  =  0  <->  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
( a  o.  F
)  u.  d ) )  =  0 ) )
3130elrab3 2924 . . . . . . . . . . 11  |-  ( ( a  o.  F )  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
( a  o.  F
)  e.  { c  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `
 ( c  u.  d ) )  =  0 }  <->  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
( a  o.  F
)  u.  d ) )  =  0 ) )
3226, 31syl 15 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  ( (
a  o.  F )  e.  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  <->  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `
 ( ( a  o.  F )  u.  d ) )  =  0 ) )
3322ad3antrrr 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  F :
( 1 ... N
) --> ( 1 ... M ) )
34 simplr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... M ) ) )
35 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )
36 coundi 5174 . . . . . . . . . . . . . . . 16  |-  ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) )  =  ( ( ( a  u.  d )  o.  F
)  u.  ( ( a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) ) )
37 coundir 5175 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  u.  d )  o.  F )  =  ( ( a  o.  F )  u.  (
d  o.  F ) )
38 elmapi 6792 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  ->  d :
( ZZ  \  NN )
--> NN0 )
39383ad2ant3 978 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  d :
( ZZ  \  NN )
--> NN0 )
40 simp1 955 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  F :
( 1 ... N
) --> ( 1 ... M ) )
41 incom 3361 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ZZ  \  NN )  i^i  ( 1 ... M ) )  =  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) )
42 fz1ssnn 26892 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1 ... M )  C_  NN
43 ssdisj 3504 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 1 ... M
)  C_  NN  /\  ( NN  i^i  ( ZZ  \  NN ) )  =  (/) )  ->  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) )  =  (/) )
4442, 18, 43mp2an 653 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) )  =  (/)
4541, 44eqtri 2303 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ZZ  \  NN )  i^i  ( 1 ... M ) )  =  (/)
4645a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( ( ZZ  \  NN )  i^i  ( 1 ... M
) )  =  (/) )
47 coeq0i 26832 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d : ( ZZ 
\  NN ) --> NN0 
/\  F : ( 1 ... N ) --> ( 1 ... M
)  /\  ( ( ZZ  \  NN )  i^i  ( 1 ... M
) )  =  (/) )  ->  ( d  o.  F )  =  (/) )
4839, 40, 46, 47syl3anc 1182 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( d  o.  F )  =  (/) )
4948uneq2d 3329 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  o.  F )  u.  ( d  o.  F ) )  =  ( ( a  o.  F )  u.  (/) ) )
5037, 49syl5eq 2327 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  u.  d )  o.  F )  =  ( ( a  o.  F )  u.  (/) ) )
51 un0 3479 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  o.  F )  u.  (/) )  =  ( a  o.  F )
5250, 51syl6eq 2331 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  u.  d )  o.  F )  =  ( a  o.  F
) )
53 coundir 5175 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  ( ( a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  u.  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) ) )
54 elmapi 6792 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  e.  ( NN0  ^m  ( 1 ... M
) )  ->  a : ( 1 ... M ) --> NN0 )
55543ad2ant2 977 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  a :
( 1 ... M
) --> NN0 )
56 f1oi 5511 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) -1-1-onto-> ( ZZ  \  NN )
57 f1of 5472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN )
-1-1-onto-> ( ZZ  \  NN )  ->  (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN ) )
5856, 57ax-mp 8 . . . . . . . . . . . . . . . . . . . . . 22  |-  (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN )
59 coeq0i 26832 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a : ( 1 ... M ) --> NN0 
/\  (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN )  /\  (
( 1 ... M
)  i^i  ( ZZ  \  NN ) )  =  (/) )  ->  ( a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  (/) )
6058, 44, 59mp3an23 1269 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a : ( 1 ... M ) --> NN0  ->  ( a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  (/) )
6155, 60syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  (/) )
62 coires1 5190 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  ( d  |`  ( ZZ  \  NN ) )
63 ffn 5389 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d : ( ZZ  \  NN ) --> NN0  ->  d  Fn  ( ZZ  \  NN ) )
64 fnresdm 5353 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d  Fn  ( ZZ  \  NN )  ->  ( d  |`  ( ZZ  \  NN ) )  =  d )
6538, 63, 643syl 18 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  ->  ( d  |`  ( ZZ  \  NN ) )  =  d )
6662, 65syl5eq 2327 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  ->  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  d )
67663ad2ant3 978 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  d )
6861, 67uneq12d 3330 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  u.  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) ) )  =  ( (/)  u.  d
) )
6953, 68syl5eq 2327 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  ( (/)  u.  d ) )
70 uncom 3319 . . . . . . . . . . . . . . . . . . 19  |-  ( (/)  u.  d )  =  ( d  u.  (/) )
71 un0 3479 . . . . . . . . . . . . . . . . . . 19  |-  ( d  u.  (/) )  =  d
7270, 71eqtri 2303 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  u.  d )  =  d
7369, 72syl6eq 2331 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  d )
7452, 73uneq12d 3330 . . . . . . . . . . . . . . . 16  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
( a  u.  d
)  o.  F )  u.  ( ( a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) ) )  =  ( ( a  o.  F
)  u.  d ) )
7536, 74syl5req 2328 . . . . . . . . . . . . . . 15  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  o.  F )  u.  d )  =  ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )
7633, 34, 35, 75syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( (
a  o.  F )  u.  d )  =  ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )
7776fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( b `  ( ( a  o.  F )  u.  d
) )  =  ( b `  ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) )
78 nn0ssz 10044 . . . . . . . . . . . . . . . . 17  |-  NN0  C_  ZZ
79 mapss 6810 . . . . . . . . . . . . . . . . 17  |-  ( ( ZZ  e.  _V  /\  NN0  C_  ZZ )  ->  ( NN0  ^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  C_  ( ZZ  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )
801, 78, 79mp2an 653 . . . . . . . . . . . . . . . 16  |-  ( NN0 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  C_  ( ZZ  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) )
8144reseq2i 4952 . . . . . . . . . . . . . . . . . . 19  |-  ( a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( a  |`  (/) )
82 res0 4959 . . . . . . . . . . . . . . . . . . 19  |-  ( a  |`  (/) )  =  (/)
8381, 82eqtri 2303 . . . . . . . . . . . . . . . . . 18  |-  ( a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  (/)
8444reseq2i 4952 . . . . . . . . . . . . . . . . . . 19  |-  ( d  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( d  |`  (/) )
85 res0 4959 . . . . . . . . . . . . . . . . . . 19  |-  ( d  |`  (/) )  =  (/)
8684, 85eqtri 2303 . . . . . . . . . . . . . . . . . 18  |-  ( d  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  (/)
8783, 86eqtr4i 2306 . . . . . . . . . . . . . . . . 17  |-  ( a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( d  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )
88 elmapresaun 26850 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  /\  (
a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( d  |`  (
( 1 ... M
)  i^i  ( ZZ  \  NN ) ) ) )  ->  ( a  u.  d )  e.  ( NN0  ^m  ( ( 1 ... M )  u.  ( ZZ  \  NN ) ) ) )
89 uncom 3319 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1 ... M )  u.  ( ZZ  \  NN ) )  =  ( ( ZZ  \  NN )  u.  ( 1 ... M ) )
9089oveq2i 5869 . . . . . . . . . . . . . . . . . 18  |-  ( NN0 
^m  ( ( 1 ... M )  u.  ( ZZ  \  NN ) ) )  =  ( NN0  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) )
9188, 90syl6eleq 2373 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  /\  (
a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( d  |`  (
( 1 ... M
)  i^i  ( ZZ  \  NN ) ) ) )  ->  ( a  u.  d )  e.  ( NN0  ^m  ( ( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )
9287, 91mp3an3 1266 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  -> 
( a  u.  d
)  e.  ( NN0 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) ) )
9380, 92sseldi 3178 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  -> 
( a  u.  d
)  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) ) )
9493adantll 694 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( a  u.  d )  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )
95 coeq1 4841 . . . . . . . . . . . . . . . 16  |-  ( e  =  ( a  u.  d )  ->  (
e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) )  =  ( ( a  u.  d
)  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )
9695fveq2d 5529 . . . . . . . . . . . . . . 15  |-  ( e  =  ( a  u.  d )  ->  (
b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )  =  ( b `
 ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )
97 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )  =  ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) )
98 fvex 5539 . . . . . . . . . . . . . . 15  |-  ( b `
 ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )  e.  _V
9996, 97, 98fvmpt 5602 . . . . . . . . . . . . . 14  |-  ( ( a  u.  d )  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )  ->  ( (
e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  ( b `  (
( a  u.  d
)  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )
10094, 99syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( (
e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  ( b `  (
( a  u.  d
)  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )
10177, 100eqtr4d 2318 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( b `  ( ( a  o.  F )  u.  d
) )  =  ( ( e  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  ( 1 ... M ) ) ) 
|->  ( b `  (
e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) ) `
 ( a  u.  d ) ) )
102101eqeq1d 2291 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( (
b `  ( (
a  o.  F )  u.  d ) )  =  0  <->  ( (
e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 ) )
103102rexbidva 2560 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  ( E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `
 ( ( a  o.  F )  u.  d ) )  =  0  <->  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( ( e  e.  ( ZZ  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) ) `  (
a  u.  d ) )  =  0 ) )
10432, 103bitrd 244 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  ( (
a  o.  F )  e.  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  <->  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 ) )
105104rabbidva 2779 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  ( a  o.  F )  e.  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 } }  =  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 } )
106 simplll 734 . . . . . . . . 9  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  M  e.  NN0 )
107 ovex 5883 . . . . . . . . . . . 12  |-  ( 1 ... M )  e. 
_V
1083, 107unex 4518 . . . . . . . . . . 11  |-  ( ( ZZ  \  NN )  u.  ( 1 ... M ) )  e. 
_V
109108a1i 10 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  (
( ZZ  \  NN )  u.  ( 1 ... M ) )  e.  _V )
110 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  ( 1 ... N
) ) ) )
111 simpllr 735 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  F : ( 1 ... N ) --> ( 1 ... M ) )
11258a1i 10 . . . . . . . . . . . . 13  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  -> 
(  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN ) )
113 id 19 . . . . . . . . . . . . 13  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  ->  F : ( 1 ... N ) --> ( 1 ... M ) )
114 incom 3361 . . . . . . . . . . . . . . 15  |-  ( ( ZZ  \  NN )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  ( ZZ  \  NN ) )
115 fz1ssnn 26892 . . . . . . . . . . . . . . . 16  |-  ( 1 ... N )  C_  NN
116 ssdisj 3504 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... N
)  C_  NN  /\  ( NN  i^i  ( ZZ  \  NN ) )  =  (/) )  ->  ( ( 1 ... N )  i^i  ( ZZ  \  NN ) )  =  (/) )
117115, 18, 116mp2an 653 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... N )  i^i  ( ZZ  \  NN ) )  =  (/)
118114, 117eqtri 2303 . . . . . . . . . . . . . 14  |-  ( ( ZZ  \  NN )  i^i  ( 1 ... N ) )  =  (/)
119118a1i 10 . . . . . . . . . . . . 13  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  -> 
( ( ZZ  \  NN )  i^i  (
1 ... N ) )  =  (/) )
120 fun 5405 . . . . . . . . . . . . 13  |-  ( ( ( (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN )  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  ( ( ZZ  \  NN )  i^i  (
1 ... N ) )  =  (/) )  ->  (
(  _I  |`  ( ZZ  \  NN ) )  u.  F ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
121112, 113, 119, 120syl21anc 1181 . . . . . . . . . . . 12  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  -> 
( (  _I  |`  ( ZZ  \  NN ) )  u.  F ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
122 uncom 3319 . . . . . . . . . . . . 13  |-  ( (  _I  |`  ( ZZ  \  NN ) )  u.  F )  =  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) )
123122feq1i 5383 . . . . . . . . . . . 12  |-  ( ( (  _I  |`  ( ZZ  \  NN ) )  u.  F ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) )  <-> 
( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
124121, 123sylib 188 . . . . . . . . . . 11  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  -> 
( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
125111, 124syl 15 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
126 mzprename 26827 . . . . . . . . . 10  |-  ( ( ( ( ZZ  \  NN )  u.  (
1 ... M ) )  e.  _V  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  ( 1 ... N
) ) )  /\  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )  ->  ( e  e.  ( ZZ  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... M ) ) ) )
127109, 110, 125, 126syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  (
e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) )  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )
1283, 16, 19eldioph4i 26895 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  ( e  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  ( 1 ... M ) ) ) 
|->  ( b `  (
e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 }  e.  (Dioph `  M ) )
129106, 127, 128syl2anc 642 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 }  e.  (Dioph `  M ) )
130105, 129eqeltrd 2357 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  ( a  o.  F )  e.  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 } }  e.  (Dioph `  M ) )
131 eleq2 2344 . . . . . . . . 9  |-  ( S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  ( ( a  o.  F )  e.  S  <->  ( a  o.  F )  e.  {
c  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
c  u.  d ) )  =  0 } ) )
132131rabbidv 2780 . . . . . . . 8  |-  ( S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  =  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  {
c  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
c  u.  d ) )  =  0 } } )
133132eleq1d 2349 . . . . . . 7  |-  ( S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  ( { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M )  <->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  {
c  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
c  u.  d ) )  =  0 } }  e.  (Dioph `  M ) ) )
134130, 133syl5ibrcom 213 . . . . . 6  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  ( S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) ) )
135134rexlimdva 2667 . . . . 5  |-  ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e. 
NN0 )  ->  ( E. b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) S  =  {
c  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) ) )
136135expimpd 586 . . . 4  |-  ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  ->  ( ( N  e.  NN0  /\  E. b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  ( 1 ... N
) ) ) S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 } )  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) ) )
13720, 136syl5bi 208 . . 3  |-  ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  ->  ( S  e.  (Dioph `  N )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) ) )
138137impcom 419 . 2  |-  ( ( S  e.  (Dioph `  N )  /\  ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) ) )  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) )
1391383impb 1147 1  |-  ( ( S  e.  (Dioph `  N )  /\  M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077    _I cid 4304   omcom 4656    |` cres 4691    o. ccom 4693    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    ^m cmap 6772    ~~ cen 6860   Fincfn 6863   0cc0 8737   1c1 8738    + caddc 8740   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782  mzPolycmzp 26800  Diophcdioph 26834
This theorem is referenced by:  rabrenfdioph  26897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338  df-mzpcl 26801  df-mzp 26802  df-dioph 26835
  Copyright terms: Public domain W3C validator