Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophun Unicode version

Theorem diophun 26726
Description: If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophun  |-  ( ( A  e.  (Dioph `  N )  /\  B  e.  (Dioph `  N )
)  ->  ( A  u.  B )  e.  (Dioph `  N ) )

Proof of Theorem diophun
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 26716 . . 3  |-  ( A  e.  (Dioph `  N
)  ->  N  e.  NN0 )
2 nnex 9966 . . . . . 6  |-  NN  e.  _V
32jctr 527 . . . . 5  |-  ( N  e.  NN0  ->  ( N  e.  NN0  /\  NN  e.  _V ) )
4 1z 10271 . . . . . . 7  |-  1  e.  ZZ
5 nnuz 10481 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
65uzinf 11264 . . . . . . 7  |-  ( 1  e.  ZZ  ->  -.  NN  e.  Fin )
74, 6ax-mp 8 . . . . . 6  |-  -.  NN  e.  Fin
8 elfznn 11040 . . . . . . 7  |-  ( a  e.  ( 1 ... N )  ->  a  e.  NN )
98ssriv 3316 . . . . . 6  |-  ( 1 ... N )  C_  NN
107, 9pm3.2i 442 . . . . 5  |-  ( -.  NN  e.  Fin  /\  ( 1 ... N
)  C_  NN )
11 eldioph2b 26715 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  NN  e.  _V )  /\  ( -.  NN  e.  Fin  /\  ( 1 ... N )  C_  NN ) )  ->  ( A  e.  (Dioph `  N
)  <->  E. a  e.  (mzPoly `  NN ) A  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
a `  d )  =  0 ) } ) )
12 eldioph2b 26715 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  NN  e.  _V )  /\  ( -.  NN  e.  Fin  /\  ( 1 ... N )  C_  NN ) )  ->  ( B  e.  (Dioph `  N
)  <->  E. c  e.  (mzPoly `  NN ) B  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) } ) )
1311, 12anbi12d 692 . . . . 5  |-  ( ( ( N  e.  NN0  /\  NN  e.  _V )  /\  ( -.  NN  e.  Fin  /\  ( 1 ... N )  C_  NN ) )  ->  (
( A  e.  (Dioph `  N )  /\  B  e.  (Dioph `  N )
)  <->  ( E. a  e.  (mzPoly `  NN ) A  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( a `  d )  =  0 ) }  /\  E. c  e.  (mzPoly `  NN ) B  =  {
b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( c `  d )  =  0 ) } ) ) )
143, 10, 13sylancl 644 . . . 4  |-  ( N  e.  NN0  ->  ( ( A  e.  (Dioph `  N )  /\  B  e.  (Dioph `  N )
)  <->  ( E. a  e.  (mzPoly `  NN ) A  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( a `  d )  =  0 ) }  /\  E. c  e.  (mzPoly `  NN ) B  =  {
b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( c `  d )  =  0 ) } ) ) )
15 reeanv 2839 . . . . 5  |-  ( E. a  e.  (mzPoly `  NN ) E. c  e.  (mzPoly `  NN )
( A  =  {
b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 ) }  /\  B  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) } )  <->  ( E. a  e.  (mzPoly `  NN ) A  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( a `  d )  =  0 ) }  /\  E. c  e.  (mzPoly `  NN ) B  =  {
b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( c `  d )  =  0 ) } ) )
16 unab 3572 . . . . . . . . 9  |-  ( { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 ) }  u.  {
b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( c `  d )  =  0 ) } )  =  { b  |  ( E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( a `  d )  =  0 )  \/  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( c `  d )  =  0 ) ) }
17 r19.43 2827 . . . . . . . . . . 11  |-  ( E. d  e.  ( NN0 
^m  NN ) ( ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( a `  d )  =  0 )  \/  ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) )  <-> 
( E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 )  \/  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( c `  d )  =  0 ) ) )
18 andi 838 . . . . . . . . . . . . 13  |-  ( ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
( a `  d
)  =  0  \/  ( c `  d
)  =  0 ) )  <->  ( ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
a `  d )  =  0 )  \/  ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( c `  d )  =  0 ) ) )
19 zex 10251 . . . . . . . . . . . . . . . . . . . 20  |-  ZZ  e.  _V
20 nn0ssz 10262 . . . . . . . . . . . . . . . . . . . 20  |-  NN0  C_  ZZ
21 mapss 7019 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ZZ  e.  _V  /\  NN0  C_  ZZ )  ->  ( NN0  ^m  NN )  C_  ( ZZ  ^m  NN ) )
2219, 20, 21mp2an 654 . . . . . . . . . . . . . . . . . . 19  |-  ( NN0 
^m  NN )  C_  ( ZZ  ^m  NN )
2322sseli 3308 . . . . . . . . . . . . . . . . . 18  |-  ( d  e.  ( NN0  ^m  NN )  ->  d  e.  ( ZZ  ^m  NN ) )
2423adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  d  e.  ( ZZ  ^m  NN ) )
25 fveq2 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  d  ->  (
a `  e )  =  ( a `  d ) )
26 fveq2 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  d  ->  (
c `  e )  =  ( c `  d ) )
2725, 26oveq12d 6062 . . . . . . . . . . . . . . . . . 18  |-  ( e  =  d  ->  (
( a `  e
)  x.  ( c `
 e ) )  =  ( ( a `
 d )  x.  ( c `  d
) ) )
28 eqid 2408 . . . . . . . . . . . . . . . . . 18  |-  ( e  e.  ( ZZ  ^m  NN )  |->  ( ( a `  e )  x.  ( c `  e ) ) )  =  ( e  e.  ( ZZ  ^m  NN )  |->  ( ( a `
 e )  x.  ( c `  e
) ) )
29 ovex 6069 . . . . . . . . . . . . . . . . . 18  |-  ( ( a `  d )  x.  ( c `  d ) )  e. 
_V
3027, 28, 29fvmpt 5769 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( ZZ  ^m  NN )  ->  ( ( e  e.  ( ZZ 
^m  NN )  |->  ( ( a `  e
)  x.  ( c `
 e ) ) ) `  d )  =  ( ( a `
 d )  x.  ( c `  d
) ) )
3124, 30syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
( e  e.  ( ZZ  ^m  NN ) 
|->  ( ( a `  e )  x.  (
c `  e )
) ) `  d
)  =  ( ( a `  d )  x.  ( c `  d ) ) )
3231eqeq1d 2416 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
( ( e  e.  ( ZZ  ^m  NN )  |->  ( ( a `
 e )  x.  ( c `  e
) ) ) `  d )  =  0  <-> 
( ( a `  d )  x.  (
c `  d )
)  =  0 ) )
33 simplrl 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  a  e.  (mzPoly `  NN )
)
34 mzpf 26687 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  (mzPoly `  NN )  ->  a : ( ZZ  ^m  NN ) --> ZZ )
3533, 34syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  a : ( ZZ  ^m  NN ) --> ZZ )
3635, 24ffvelrnd 5834 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
a `  d )  e.  ZZ )
3736zcnd 10336 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
a `  d )  e.  CC )
38 simplrr 738 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  c  e.  (mzPoly `  NN )
)
39 mzpf 26687 . . . . . . . . . . . . . . . . . . 19  |-  ( c  e.  (mzPoly `  NN )  ->  c : ( ZZ  ^m  NN ) --> ZZ )
4038, 39syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  c : ( ZZ  ^m  NN ) --> ZZ )
4140, 24ffvelrnd 5834 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
c `  d )  e.  ZZ )
4241zcnd 10336 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
c `  d )  e.  CC )
4337, 42mul0ord 9632 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
( ( a `  d )  x.  (
c `  d )
)  =  0  <->  (
( a `  d
)  =  0  \/  ( c `  d
)  =  0 ) ) )
4432, 43bitr2d 246 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
( ( a `  d )  =  0  \/  ( c `  d )  =  0 )  <->  ( ( e  e.  ( ZZ  ^m  NN )  |->  ( ( a `  e )  x.  ( c `  e ) ) ) `
 d )  =  0 ) )
4544anbi2d 685 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
( b  =  ( d  |`  ( 1 ... N ) )  /\  ( ( a `
 d )  =  0  \/  ( c `
 d )  =  0 ) )  <->  ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
( e  e.  ( ZZ  ^m  NN ) 
|->  ( ( a `  e )  x.  (
c `  e )
) ) `  d
)  =  0 ) ) )
4618, 45syl5bbr 251 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  /\  d  e.  ( NN0  ^m  NN ) )  ->  (
( ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 )  \/  ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) )  <-> 
( b  =  ( d  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  NN )  |->  ( ( a `  e )  x.  ( c `  e ) ) ) `
 d )  =  0 ) ) )
4746rexbidva 2687 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  ( E. d  e.  ( NN0  ^m  NN ) ( ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( a `  d )  =  0 )  \/  ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) )  <->  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
( e  e.  ( ZZ  ^m  NN ) 
|->  ( ( a `  e )  x.  (
c `  e )
) ) `  d
)  =  0 ) ) )
4817, 47syl5bbr 251 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  (
( E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 )  \/  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( c `  d )  =  0 ) )  <->  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  NN )  |->  ( ( a `  e )  x.  ( c `  e ) ) ) `
 d )  =  0 ) ) )
4948abbidv 2522 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  { b  |  ( E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 )  \/  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( c `  d )  =  0 ) ) }  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
( e  e.  ( ZZ  ^m  NN ) 
|->  ( ( a `  e )  x.  (
c `  e )
) ) `  d
)  =  0 ) } )
5016, 49syl5eq 2452 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  ( { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
a `  d )  =  0 ) }  u.  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( c `  d )  =  0 ) } )  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
( e  e.  ( ZZ  ^m  NN ) 
|->  ( ( a `  e )  x.  (
c `  e )
) ) `  d
)  =  0 ) } )
51 simpl 444 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  N  e.  NN0 )
522, 9pm3.2i 442 . . . . . . . . . 10  |-  ( NN  e.  _V  /\  (
1 ... N )  C_  NN )
5352a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  ( NN  e.  _V  /\  (
1 ... N )  C_  NN ) )
54 simprl 733 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  a  e.  (mzPoly `  NN )
)
5554, 34syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  a : ( ZZ  ^m  NN ) --> ZZ )
5655feqmptd 5742 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  a  =  ( e  e.  ( ZZ  ^m  NN )  |->  ( a `  e ) ) )
5756, 54eqeltrrd 2483 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  (
e  e.  ( ZZ 
^m  NN )  |->  ( a `  e ) )  e.  (mzPoly `  NN ) )
58 simprr 734 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  c  e.  (mzPoly `  NN )
)
5958, 39syl 16 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  c : ( ZZ  ^m  NN ) --> ZZ )
6059feqmptd 5742 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  c  =  ( e  e.  ( ZZ  ^m  NN )  |->  ( c `  e ) ) )
6160, 58eqeltrrd 2483 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  (
e  e.  ( ZZ 
^m  NN )  |->  ( c `  e ) )  e.  (mzPoly `  NN ) )
62 mzpmulmpt 26693 . . . . . . . . . 10  |-  ( ( ( e  e.  ( ZZ  ^m  NN ) 
|->  ( a `  e
) )  e.  (mzPoly `  NN )  /\  (
e  e.  ( ZZ 
^m  NN )  |->  ( c `  e ) )  e.  (mzPoly `  NN ) )  ->  (
e  e.  ( ZZ 
^m  NN )  |->  ( ( a `  e
)  x.  ( c `
 e ) ) )  e.  (mzPoly `  NN ) )
6357, 61, 62syl2anc 643 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  (
e  e.  ( ZZ 
^m  NN )  |->  ( ( a `  e
)  x.  ( c `
 e ) ) )  e.  (mzPoly `  NN ) )
64 eldioph2 26714 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( NN  e.  _V  /\  ( 1 ... N
)  C_  NN )  /\  ( e  e.  ( ZZ  ^m  NN ) 
|->  ( ( a `  e )  x.  (
c `  e )
) )  e.  (mzPoly `  NN ) )  ->  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
( e  e.  ( ZZ  ^m  NN ) 
|->  ( ( a `  e )  x.  (
c `  e )
) ) `  d
)  =  0 ) }  e.  (Dioph `  N ) )
6551, 53, 63, 64syl3anc 1184 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  NN )  |->  ( ( a `  e )  x.  ( c `  e ) ) ) `
 d )  =  0 ) }  e.  (Dioph `  N ) )
6650, 65eqeltrd 2482 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  ( { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
a `  d )  =  0 ) }  u.  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( c `  d )  =  0 ) } )  e.  (Dioph `  N )
)
67 uneq12 3460 . . . . . . . 8  |-  ( ( A  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 ) }  /\  B  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) } )  ->  ( A  u.  B )  =  ( { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
a `  d )  =  0 ) }  u.  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( c `  d )  =  0 ) } ) )
6867eleq1d 2474 . . . . . . 7  |-  ( ( A  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 ) }  /\  B  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) } )  ->  ( ( A  u.  B )  e.  (Dioph `  N )  <->  ( { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
a `  d )  =  0 ) }  u.  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( c `  d )  =  0 ) } )  e.  (Dioph `  N )
) )
6966, 68syl5ibrcom 214 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( a  e.  (mzPoly `  NN )  /\  c  e.  (mzPoly `  NN )
) )  ->  (
( A  =  {
b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 ) }  /\  B  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) } )  ->  ( A  u.  B )  e.  (Dioph `  N ) ) )
7069rexlimdvva 2801 . . . . 5  |-  ( N  e.  NN0  ->  ( E. a  e.  (mzPoly `  NN ) E. c  e.  (mzPoly `  NN )
( A  =  {
b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  (
1 ... N ) )  /\  ( a `  d )  =  0 ) }  /\  B  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
c `  d )  =  0 ) } )  ->  ( A  u.  B )  e.  (Dioph `  N ) ) )
7115, 70syl5bir 210 . . . 4  |-  ( N  e.  NN0  ->  ( ( E. a  e.  (mzPoly `  NN ) A  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N
) )  /\  (
a `  d )  =  0 ) }  /\  E. c  e.  (mzPoly `  NN ) B  =  { b  |  E. d  e.  ( NN0  ^m  NN ) ( b  =  ( d  |`  ( 1 ... N ) )  /\  ( c `  d )  =  0 ) } )  -> 
( A  u.  B
)  e.  (Dioph `  N ) ) )
7214, 71sylbid 207 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  (Dioph `  N )  /\  B  e.  (Dioph `  N )
)  ->  ( A  u.  B )  e.  (Dioph `  N ) ) )
731, 72syl 16 . 2  |-  ( A  e.  (Dioph `  N
)  ->  ( ( A  e.  (Dioph `  N
)  /\  B  e.  (Dioph `  N ) )  ->  ( A  u.  B )  e.  (Dioph `  N ) ) )
7473anabsi5 791 1  |-  ( ( A  e.  (Dioph `  N )  /\  B  e.  (Dioph `  N )
)  ->  ( A  u.  B )  e.  (Dioph `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2394   E.wrex 2671   _Vcvv 2920    u. cun 3282    C_ wss 3284    e. cmpt 4230    |` cres 4843   -->wf 5413   ` cfv 5417  (class class class)co 6044    ^m cmap 6981   Fincfn 7072   0cc0 8950   1c1 8951    x. cmul 8955   NNcn 9960   NN0cn0 10181   ZZcz 10242   ...cfz 11003  mzPolycmzp 26673  Diophcdioph 26707
This theorem is referenced by:  orrabdioph  26734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-of 6268  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-card 7786  df-cda 8008  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-n0 10182  df-z 10243  df-uz 10449  df-fz 11004  df-hash 11578  df-mzpcl 26674  df-mzp 26675  df-dioph 26708
  Copyright terms: Public domain W3C validator