MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcj Unicode version

Theorem dipcj 22174
Description: The complex conjugate of an inner product reverses its arguments. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1  |-  X  =  ( BaseSet `  U )
ipcl.7  |-  P  =  ( .i OLD `  U
)
Assertion
Ref Expression
dipcj  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( B P A ) )

Proof of Theorem dipcj
StepHypRef Expression
1 ipcl.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 eqid 2412 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
3 eqid 2412 . . . 4  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
4 eqid 2412 . . . 4  |-  ( normCV `  U )  =  (
normCV
`  U )
5 ipcl.7 . . . 4  |-  P  =  ( .i OLD `  U
)
61, 2, 3, 4, 5ipval2 22164 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  =  ( ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )
76fveq2d 5699 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( * `  (
( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) ) )
81, 2, 3, 4, 5ipval2 22164 . . . 4  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
983com23 1159 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B P A )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
101, 2, 3, 4, 5ipval2lem3 22162 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  e.  RR )
1110recnd 9078 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  e.  CC )
12 neg1cn 10031 . . . . . . . 8  |-  -u 1  e.  CC
131, 2, 3, 4, 5ipval2lem4 22163 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u 1  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 )  e.  CC )
1412, 13mpan2 653 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1511, 14subcld 9375 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC )
16 ax-icn 9013 . . . . . . 7  |-  _i  e.  CC
171, 2, 3, 4, 5ipval2lem4 22163 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1816, 17mpan2 653 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
1916negcli 9332 . . . . . . . . 9  |-  -u _i  e.  CC
201, 2, 3, 4, 5ipval2lem4 22163 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
2119, 20mpan2 653 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  CC )
2218, 21subcld 9375 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )
23 mulcl 9038 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( _i  x.  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  e.  CC )
2416, 22, 23sylancr 645 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  e.  CC )
2515, 24addcld 9071 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC )
26 4cn 10038 . . . . . 6  |-  4  e.  CC
27 4re 10037 . . . . . . 7  |-  4  e.  RR
28 4pos 10050 . . . . . . 7  |-  0  <  4
2927, 28gt0ne0ii 9527 . . . . . 6  |-  4  =/=  0
30 cjdiv 11932 . . . . . 6  |-  ( ( ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC  /\  4  e.  CC  /\  4  =/=  0 )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
3126, 29, 30mp3an23 1271 . . . . 5  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  e.  CC  ->  ( * `  ( ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
3225, 31syl 16 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) ) )
33 cjre 11907 . . . . . . 7  |-  ( 4  e.  RR  ->  (
* `  4 )  =  4 )
3427, 33ax-mp 8 . . . . . 6  |-  ( * `
 4 )  =  4
3534oveq2i 6059 . . . . 5  |-  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) )  =  ( ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  4 )
361, 2, 3, 4, 5ipval2lem2 22161 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u 1  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 )  e.  RR )
3712, 36mpan2 653 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
3810, 37resubcld 9429 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  RR )
391, 2, 3, 4, 5ipval2lem2 22161 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4016, 39mpan2 653 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
411, 2, 3, 4, 5ipval2lem2 22161 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  /\  -u _i  e.  CC )  ->  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4219, 41mpan2 653 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  e.  RR )
4340, 42resubcld 9429 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  RR )
44 cjreim 11928 . . . . . . . 8  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  RR  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  RR )  ->  ( * `  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4538, 43, 44syl2anc 643 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
46 submul2 9438 . . . . . . . . 9  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC  /\  _i  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4716, 46mp3an2 1267 . . . . . . . 8  |-  ( ( ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  e.  CC  /\  ( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  e.  CC )  ->  ( ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
4815, 22, 47syl2anc 643 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  -  (
_i  x.  ( (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )
491, 2nvcom 22061 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A ( +v `  U ) B )  =  ( B ( +v `  U ) A ) )
5049fveq2d 5699 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) B ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) A ) ) )
5150oveq1d 6063 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) B ) ) ^ 2 )  =  ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 ) )
521, 2, 3, 4nvdif 22115 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) )  =  ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) )
5352oveq1d 6063 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )
5451, 53oveq12d 6066 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) ) )
5518, 21negsubdi2d 9391 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )
561, 2, 3, 4nvpi 22116 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
( normCV `  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) )  =  ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) )
57563com23 1159 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) )  =  ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) )
5857eqcomd 2417 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) )
5958oveq1d 6063 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 ) )
601, 2, 3, 4nvpi 22116 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) )  =  ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) )
6160oveq1d 6063 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  =  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) )
6259, 61oveq12d 6066 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) )
6355, 62eqtrd 2444 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) )  =  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) )
6463oveq2d 6064 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
_i  x.  -u ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) )  =  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )
6554, 64oveq12d 6066 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  -u (
( ( ( normCV `  U ) `  ( A ( +v `  U ) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  =  ( ( ( ( ( normCV `  U ) `  ( B ( +v `  U ) A ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) ) )
6645, 48, 653eqtrd 2448 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) ) )
6766oveq1d 6063 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( * `  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  4 )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
6835, 67syl5eq 2456 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( * `  (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) ) )  /  ( * ` 
4 ) )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
6932, 68eqtrd 2444 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( (
( ( ( (
normCV
`  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) )  =  ( ( ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) A ) ) ^ 2 )  -  ( ( ( normCV `  U ) `  ( B ( +v `  U ) ( -u
1 ( .s OLD `  U ) A ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( B
( +v `  U
) ( _i ( .s OLD `  U
) A ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( B ( +v `  U ) ( -u _i ( .s OLD `  U
) A ) ) ) ^ 2 ) ) ) )  / 
4 ) )
709, 69eqtr4d 2447 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( B P A )  =  ( * `  (
( ( ( ( ( normCV `  U ) `  ( A ( +v `  U ) B ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) ^ 2 ) )  +  ( _i  x.  ( ( ( ( normCV `  U
) `  ( A
( +v `  U
) ( _i ( .s OLD `  U
) B ) ) ) ^ 2 )  -  ( ( (
normCV
`  U ) `  ( A ( +v `  U ) ( -u _i ( .s OLD `  U
) B ) ) ) ^ 2 ) ) ) )  / 
4 ) ) )
717, 70eqtr4d 2447 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( B P A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   ` cfv 5421  (class class class)co 6048   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955   _ici 8956    + caddc 8957    x. cmul 8959    - cmin 9255   -ucneg 9256    / cdiv 9641   2c2 10013   4c4 10015   ^cexp 11345   *ccj 11864   NrmCVeccnv 22024   +vcpv 22025   BaseSetcba 22026   .s
OLDcns 22027   normCVcnmcv 22030   .i OLDcdip 22157
This theorem is referenced by:  ipipcj  22175  diporthcom  22176  dip0l  22178  ipasslem10  22301  dipdi  22305  dipassr  22308  dipsubdi  22311  siii  22315  hlipcj  22374
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-oi 7443  df-card 7790  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-fz 11008  df-fzo 11099  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-clim 12245  df-sum 12443  df-grpo 21740  df-gid 21741  df-ginv 21742  df-ablo 21831  df-vc 21986  df-nv 22032  df-va 22035  df-ba 22036  df-sm 22037  df-0v 22038  df-nmcv 22040  df-dip 22158
  Copyright terms: Public domain W3C validator