MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirref Unicode version

Theorem dirref 14357
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
dirref.1  |-  X  =  dom  R
Assertion
Ref Expression
dirref  |-  ( ( R  e.  DirRel  /\  A  e.  X )  ->  A R A )

Proof of Theorem dirref
StepHypRef Expression
1 eqid 2283 . . . 4  |-  A  =  A
2 resieq 4965 . . . . 5  |-  ( ( A  e.  X  /\  A  e.  X )  ->  ( A (  _I  |`  X ) A  <->  A  =  A ) )
32anidms 626 . . . 4  |-  ( A  e.  X  ->  ( A (  _I  |`  X ) A  <->  A  =  A
) )
41, 3mpbiri 224 . . 3  |-  ( A  e.  X  ->  A
(  _I  |`  X ) A )
5 dirref.1 . . . . . . 7  |-  X  =  dom  R
6 dirdm 14356 . . . . . . 7  |-  ( R  e.  DirRel  ->  dom  R  =  U. U. R )
75, 6syl5eq 2327 . . . . . 6  |-  ( R  e.  DirRel  ->  X  =  U. U. R )
87reseq2d 4955 . . . . 5  |-  ( R  e.  DirRel  ->  (  _I  |`  X )  =  (  _I  |`  U. U. R ) )
9 eqid 2283 . . . . . . . . 9  |-  U. U. R  =  U. U. R
109isdir 14354 . . . . . . . 8  |-  ( R  e.  DirRel  ->  ( R  e. 
DirRel 
<->  ( ( Rel  R  /\  (  _I  |`  U. U. R )  C_  R
)  /\  ( ( R  o.  R )  C_  R  /\  ( U. U. R  X.  U. U. R )  C_  ( `' R  o.  R
) ) ) ) )
1110ibi 232 . . . . . . 7  |-  ( R  e.  DirRel  ->  ( ( Rel 
R  /\  (  _I  |` 
U. U. R )  C_  R )  /\  (
( R  o.  R
)  C_  R  /\  ( U. U. R  X.  U.
U. R )  C_  ( `' R  o.  R
) ) ) )
1211simpld 445 . . . . . 6  |-  ( R  e.  DirRel  ->  ( Rel  R  /\  (  _I  |`  U. U. R )  C_  R
) )
1312simprd 449 . . . . 5  |-  ( R  e.  DirRel  ->  (  _I  |`  U. U. R )  C_  R
)
148, 13eqsstrd 3212 . . . 4  |-  ( R  e.  DirRel  ->  (  _I  |`  X ) 
C_  R )
1514ssbrd 4064 . . 3  |-  ( R  e.  DirRel  ->  ( A (  _I  |`  X ) A  ->  A R A ) )
164, 15syl5 28 . 2  |-  ( R  e.  DirRel  ->  ( A  e.  X  ->  A R A ) )
1716imp 418 1  |-  ( ( R  e.  DirRel  /\  A  e.  X )  ->  A R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   U.cuni 3827   class class class wbr 4023    _I cid 4304    X. cxp 4687   `'ccnv 4688   dom cdm 4689    |` cres 4691    o. ccom 4693   Rel wrel 4694   DirRelcdir 14350
This theorem is referenced by:  tailini  26325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-dir 14352
  Copyright terms: Public domain W3C validator