MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirtr Unicode version

Theorem dirtr 14374
Description: A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirtr  |-  ( ( ( R  e.  DirRel  /\  C  e.  V )  /\  ( A R B  /\  B R C ) )  ->  A R C )

Proof of Theorem dirtr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldir 14371 . . . . 5  |-  ( R  e.  DirRel  ->  Rel  R )
2 brrelex 4743 . . . . . . 7  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
32ex 423 . . . . . 6  |-  ( Rel 
R  ->  ( A R B  ->  A  e. 
_V ) )
4 brrelex 4743 . . . . . . 7  |-  ( ( Rel  R  /\  B R C )  ->  B  e.  _V )
54ex 423 . . . . . 6  |-  ( Rel 
R  ->  ( B R C  ->  B  e. 
_V ) )
63, 5anim12d 546 . . . . 5  |-  ( Rel 
R  ->  ( ( A R B  /\  B R C )  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
71, 6syl 15 . . . 4  |-  ( R  e.  DirRel  ->  ( ( A R B  /\  B R C )  ->  ( A  e.  _V  /\  B  e.  _V ) ) )
8 eqid 2296 . . . . . . . . . . . 12  |-  U. U. R  =  U. U. R
98isdir 14370 . . . . . . . . . . 11  |-  ( R  e.  DirRel  ->  ( R  e. 
DirRel 
<->  ( ( Rel  R  /\  (  _I  |`  U. U. R )  C_  R
)  /\  ( ( R  o.  R )  C_  R  /\  ( U. U. R  X.  U. U. R )  C_  ( `' R  o.  R
) ) ) ) )
109ibi 232 . . . . . . . . . 10  |-  ( R  e.  DirRel  ->  ( ( Rel 
R  /\  (  _I  |` 
U. U. R )  C_  R )  /\  (
( R  o.  R
)  C_  R  /\  ( U. U. R  X.  U.
U. R )  C_  ( `' R  o.  R
) ) ) )
1110simprd 449 . . . . . . . . 9  |-  ( R  e.  DirRel  ->  ( ( R  o.  R )  C_  R  /\  ( U. U. R  X.  U. U. R
)  C_  ( `' R  o.  R )
) )
1211simpld 445 . . . . . . . 8  |-  ( R  e.  DirRel  ->  ( R  o.  R )  C_  R
)
13 cotr 5071 . . . . . . . 8  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
1412, 13sylib 188 . . . . . . 7  |-  ( R  e.  DirRel  ->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
15 breq12 4044 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x R y  <-> 
A R B ) )
16153adant3 975 . . . . . . . . . 10  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x R y  <-> 
A R B ) )
17 breq12 4044 . . . . . . . . . . 11  |-  ( ( y  =  B  /\  z  =  C )  ->  ( y R z  <-> 
B R C ) )
18173adant1 973 . . . . . . . . . 10  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( y R z  <-> 
B R C ) )
1916, 18anbi12d 691 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( x R y  /\  y R z )  <->  ( A R B  /\  B R C ) ) )
20 breq12 4044 . . . . . . . . . 10  |-  ( ( x  =  A  /\  z  =  C )  ->  ( x R z  <-> 
A R C ) )
21203adant2 974 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x R z  <-> 
A R C ) )
2219, 21imbi12d 311 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( ( x R y  /\  y R z )  ->  x R z )  <->  ( ( A R B  /\  B R C )  ->  A R C ) ) )
2322spc3gv 2886 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  V )  ->  ( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  -> 
( ( A R B  /\  B R C )  ->  A R C ) ) )
2414, 23syl5 28 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  V )  ->  ( R  e.  DirRel  ->  (
( A R B  /\  B R C )  ->  A R C ) ) )
25243expia 1153 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( C  e.  V  ->  ( R  e.  DirRel  -> 
( ( A R B  /\  B R C )  ->  A R C ) ) ) )
2625com4t 79 . . . 4  |-  ( R  e.  DirRel  ->  ( ( A R B  /\  B R C )  ->  (
( A  e.  _V  /\  B  e.  _V )  ->  ( C  e.  V  ->  A R C ) ) ) )
277, 26mpdd 36 . . 3  |-  ( R  e.  DirRel  ->  ( ( A R B  /\  B R C )  ->  ( C  e.  V  ->  A R C ) ) )
2827imp31 421 . 2  |-  ( ( ( R  e.  DirRel  /\  ( A R B  /\  B R C ) )  /\  C  e.  V )  ->  A R C )
2928an32s 779 1  |-  ( ( ( R  e.  DirRel  /\  C  e.  V )  /\  ( A R B  /\  B R C ) )  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696   _Vcvv 2801    C_ wss 3165   U.cuni 3843   class class class wbr 4039    _I cid 4320    X. cxp 4703   `'ccnv 4704    |` cres 4707    o. ccom 4709   Rel wrel 4710   DirRelcdir 14366
This theorem is referenced by:  tailfb  26429
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-res 4717  df-dir 14368
  Copyright terms: Public domain W3C validator