MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr Structured version   Unicode version

Theorem discr 11518
Description: If a quadratic polynomial with real coefficients is nonnegative for all values, then its discriminant is non-positive. (Contributed by NM, 10-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1  |-  ( ph  ->  A  e.  RR )
discr.2  |-  ( ph  ->  B  e.  RR )
discr.3  |-  ( ph  ->  C  e.  RR )
discr.4  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
Assertion
Ref Expression
discr  |-  ( ph  ->  ( ( B ^
2 )  -  (
4  x.  ( A  x.  C ) ) )  <_  0 )
Distinct variable groups:    x, A    x, B    x, C    ph, x

Proof of Theorem discr
StepHypRef Expression
1 discr.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
21adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  B  e.  RR )
3 resqcl 11451 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( B ^ 2 )  e.  RR )
42, 3syl 16 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( B ^ 2 )  e.  RR )
54recnd 9116 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( B ^ 2 )  e.  CC )
6 4re 10075 . . . . . . . . 9  |-  4  e.  RR
7 discr.1 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
87adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  A  e.  RR )
9 discr.3 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
109adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  C  e.  RR )
118, 10remulcld 9118 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  ( A  x.  C )  e.  RR )
12 remulcl 9077 . . . . . . . . 9  |-  ( ( 4  e.  RR  /\  ( A  x.  C
)  e.  RR )  ->  ( 4  x.  ( A  x.  C
) )  e.  RR )
136, 11, 12sylancr 646 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( 4  x.  ( A  x.  C ) )  e.  RR )
1413recnd 9116 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( 4  x.  ( A  x.  C ) )  e.  CC )
15 4pos 10088 . . . . . . . . . 10  |-  0  <  4
166, 15elrpii 10617 . . . . . . . . 9  |-  4  e.  RR+
17 simpr 449 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  0  <  A )
188, 17elrpd 10648 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  A  e.  RR+ )
19 rpmulcl 10635 . . . . . . . . 9  |-  ( ( 4  e.  RR+  /\  A  e.  RR+ )  ->  (
4  x.  A )  e.  RR+ )
2016, 18, 19sylancr 646 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( 4  x.  A )  e.  RR+ )
2120rpcnd 10652 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( 4  x.  A )  e.  CC )
2220rpne0d 10655 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( 4  x.  A )  =/=  0 )
235, 14, 21, 22divsubdird 9831 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  /  ( 4  x.  A ) )  =  ( ( ( B ^ 2 )  / 
( 4  x.  A
) )  -  (
( 4  x.  ( A  x.  C )
)  /  ( 4  x.  A ) ) ) )
2411recnd 9116 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  ( A  x.  C )  e.  CC )
258recnd 9116 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  A  e.  CC )
26 4cn 10076 . . . . . . . . . 10  |-  4  e.  CC
2726a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  4  e.  CC )
2818rpne0d 10655 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  A  =/=  0 )
296, 15gt0ne0ii 9565 . . . . . . . . . 10  |-  4  =/=  0
3029a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  4  =/=  0 )
3124, 25, 27, 28, 30divcan5d 9818 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( (
4  x.  ( A  x.  C ) )  /  ( 4  x.  A ) )  =  ( ( A  x.  C )  /  A
) )
3210recnd 9116 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  C  e.  CC )
3332, 25, 28divcan3d 9797 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( ( A  x.  C )  /  A )  =  C )
3431, 33eqtrd 2470 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( (
4  x.  ( A  x.  C ) )  /  ( 4  x.  A ) )  =  C )
3534oveq2d 6099 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  -  ( ( 4  x.  ( A  x.  C ) )  / 
( 4  x.  A
) ) )  =  ( ( ( B ^ 2 )  / 
( 4  x.  A
) )  -  C
) )
3623, 35eqtrd 2470 . . . . 5  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  /  ( 4  x.  A ) )  =  ( ( ( B ^ 2 )  / 
( 4  x.  A
) )  -  C
) )
374, 20rerpdivcld 10677 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( 4  x.  A
) )  e.  RR )
3837recnd 9116 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( 4  x.  A
) )  e.  CC )
39382timesd 10212 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  ( 2  x.  ( ( B ^ 2 )  / 
( 4  x.  A
) ) )  =  ( ( ( B ^ 2 )  / 
( 4  x.  A
) )  +  ( ( B ^ 2 )  /  ( 4  x.  A ) ) ) )
40 2t2e4 10129 . . . . . . . . . . . . 13  |-  ( 2  x.  2 )  =  4
4140oveq1i 6093 . . . . . . . . . . . 12  |-  ( ( 2  x.  2 )  x.  A )  =  ( 4  x.  A
)
42 2cn 10072 . . . . . . . . . . . . . 14  |-  2  e.  CC
4342a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  A )  ->  2  e.  CC )
4443, 43, 25mulassd 9113 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  A )  ->  ( (
2  x.  2 )  x.  A )  =  ( 2  x.  (
2  x.  A ) ) )
4541, 44syl5eqr 2484 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) ) )
4645oveq2d 6099 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  ( (
2  x.  ( B ^ 2 ) )  /  ( 4  x.  A ) )  =  ( ( 2  x.  ( B ^ 2 ) )  /  (
2  x.  ( 2  x.  A ) ) ) )
4743, 5, 21, 22divassd 9827 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  ( (
2  x.  ( B ^ 2 ) )  /  ( 4  x.  A ) )  =  ( 2  x.  (
( B ^ 2 )  /  ( 4  x.  A ) ) ) )
48 2rp 10619 . . . . . . . . . . . . 13  |-  2  e.  RR+
49 rpmulcl 10635 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  A  e.  RR+ )  ->  (
2  x.  A )  e.  RR+ )
5048, 18, 49sylancr 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  A )  ->  ( 2  x.  A )  e.  RR+ )
5150rpcnd 10652 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  ( 2  x.  A )  e.  CC )
5250rpne0d 10655 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  ( 2  x.  A )  =/=  0 )
53 2ne0 10085 . . . . . . . . . . . 12  |-  2  =/=  0
5453a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  2  =/=  0 )
555, 51, 43, 52, 54divcan5d 9818 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  ( (
2  x.  ( B ^ 2 ) )  /  ( 2  x.  ( 2  x.  A
) ) )  =  ( ( B ^
2 )  /  (
2  x.  A ) ) )
5646, 47, 553eqtr3d 2478 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  ( 2  x.  ( ( B ^ 2 )  / 
( 4  x.  A
) ) )  =  ( ( B ^
2 )  /  (
2  x.  A ) ) )
5739, 56eqtr3d 2472 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  +  ( ( B ^ 2 )  / 
( 4  x.  A
) ) )  =  ( ( B ^
2 )  /  (
2  x.  A ) ) )
582, 50rerpdivcld 10677 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  A )  ->  ( B  /  ( 2  x.  A ) )  e.  RR )
5958renegcld 9466 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  -u ( B  /  ( 2  x.  A ) )  e.  RR )
60 discr.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
6160ralrimiva 2791 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  RR  0  <_  ( ( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C ) )
6261adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  A. x  e.  RR  0  <_  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C ) )
63 oveq1 6090 . . . . . . . . . . . . . . . 16  |-  ( x  =  -u ( B  / 
( 2  x.  A
) )  ->  (
x ^ 2 )  =  ( -u ( B  /  ( 2  x.  A ) ) ^
2 ) )
6463oveq2d 6099 . . . . . . . . . . . . . . 15  |-  ( x  =  -u ( B  / 
( 2  x.  A
) )  ->  ( A  x.  ( x ^ 2 ) )  =  ( A  x.  ( -u ( B  / 
( 2  x.  A
) ) ^ 2 ) ) )
65 oveq2 6091 . . . . . . . . . . . . . . 15  |-  ( x  =  -u ( B  / 
( 2  x.  A
) )  ->  ( B  x.  x )  =  ( B  x.  -u ( B  /  (
2  x.  A ) ) ) )
6664, 65oveq12d 6101 . . . . . . . . . . . . . 14  |-  ( x  =  -u ( B  / 
( 2  x.  A
) )  ->  (
( A  x.  (
x ^ 2 ) )  +  ( B  x.  x ) )  =  ( ( A  x.  ( -u ( B  /  ( 2  x.  A ) ) ^
2 ) )  +  ( B  x.  -u ( B  /  ( 2  x.  A ) ) ) ) )
6766oveq1d 6098 . . . . . . . . . . . . 13  |-  ( x  =  -u ( B  / 
( 2  x.  A
) )  ->  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  =  ( ( ( A  x.  ( -u ( B  /  (
2  x.  A ) ) ^ 2 ) )  +  ( B  x.  -u ( B  / 
( 2  x.  A
) ) ) )  +  C ) )
6867breq2d 4226 . . . . . . . . . . . 12  |-  ( x  =  -u ( B  / 
( 2  x.  A
) )  ->  (
0  <_  ( (
( A  x.  (
x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  <->  0  <_  ( ( ( A  x.  ( -u ( B  / 
( 2  x.  A
) ) ^ 2 ) )  +  ( B  x.  -u ( B  /  ( 2  x.  A ) ) ) )  +  C ) ) )
6968rspcv 3050 . . . . . . . . . . 11  |-  ( -u ( B  /  (
2  x.  A ) )  e.  RR  ->  ( A. x  e.  RR  0  <_  ( ( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  ->  0  <_  ( ( ( A  x.  ( -u ( B  /  ( 2  x.  A ) ) ^
2 ) )  +  ( B  x.  -u ( B  /  ( 2  x.  A ) ) ) )  +  C ) ) )
7059, 62, 69sylc 59 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  0  <_  ( ( ( A  x.  ( -u ( B  / 
( 2  x.  A
) ) ^ 2 ) )  +  ( B  x.  -u ( B  /  ( 2  x.  A ) ) ) )  +  C ) )
7158recnd 9116 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  0  <  A )  ->  ( B  /  ( 2  x.  A ) )  e.  CC )
72 sqneg 11444 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  /  ( 2  x.  A ) )  e.  CC  ->  ( -u ( B  /  (
2  x.  A ) ) ^ 2 )  =  ( ( B  /  ( 2  x.  A ) ) ^
2 ) )
7371, 72syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  <  A )  ->  ( -u ( B  /  ( 2  x.  A ) ) ^
2 )  =  ( ( B  /  (
2  x.  A ) ) ^ 2 ) )
742recnd 9116 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  0  <  A )  ->  B  e.  CC )
75 sqdiv 11449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  CC  /\  ( 2  x.  A
)  e.  CC  /\  ( 2  x.  A
)  =/=  0 )  ->  ( ( B  /  ( 2  x.  A ) ) ^
2 )  =  ( ( B ^ 2 )  /  ( ( 2  x.  A ) ^ 2 ) ) )
7674, 51, 52, 75syl3anc 1185 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  <  A )  ->  ( ( B  /  ( 2  x.  A ) ) ^
2 )  =  ( ( B ^ 2 )  /  ( ( 2  x.  A ) ^ 2 ) ) )
77 sqval 11443 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  A )  e.  CC  ->  (
( 2  x.  A
) ^ 2 )  =  ( ( 2  x.  A )  x.  ( 2  x.  A
) ) )
7851, 77syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  0  <  A )  ->  ( (
2  x.  A ) ^ 2 )  =  ( ( 2  x.  A )  x.  (
2  x.  A ) ) )
7951, 43, 25mulassd 9113 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  0  <  A )  ->  ( (
( 2  x.  A
)  x.  2 )  x.  A )  =  ( ( 2  x.  A )  x.  (
2  x.  A ) ) )
8043, 25, 43mul32d 9278 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  0  <  A )  ->  ( (
2  x.  A )  x.  2 )  =  ( ( 2  x.  2 )  x.  A
) )
8180, 41syl6eq 2486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  0  <  A )  ->  ( (
2  x.  A )  x.  2 )  =  ( 4  x.  A
) )
8281oveq1d 6098 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  0  <  A )  ->  ( (
( 2  x.  A
)  x.  2 )  x.  A )  =  ( ( 4  x.  A )  x.  A
) )
8378, 79, 823eqtr2d 2476 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  0  <  A )  ->  ( (
2  x.  A ) ^ 2 )  =  ( ( 4  x.  A )  x.  A
) )
8483oveq2d 6099 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( ( 2  x.  A ) ^ 2 ) )  =  ( ( B ^ 2 )  /  ( ( 4  x.  A )  x.  A ) ) )
8573, 76, 843eqtrd 2474 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  0  <  A )  ->  ( -u ( B  /  ( 2  x.  A ) ) ^
2 )  =  ( ( B ^ 2 )  /  ( ( 4  x.  A )  x.  A ) ) )
865, 21, 25, 22, 28divdiv1d 9823 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  /  A )  =  ( ( B ^
2 )  /  (
( 4  x.  A
)  x.  A ) ) )
8785, 86eqtr4d 2473 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  0  <  A )  ->  ( -u ( B  /  ( 2  x.  A ) ) ^
2 )  =  ( ( ( B ^
2 )  /  (
4  x.  A ) )  /  A ) )
8887oveq2d 6099 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  0  <  A )  ->  ( A  x.  ( -u ( B  /  ( 2  x.  A ) ) ^
2 ) )  =  ( A  x.  (
( ( B ^
2 )  /  (
4  x.  A ) )  /  A ) ) )
8938, 25, 28divcan2d 9794 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  0  <  A )  ->  ( A  x.  ( ( ( B ^ 2 )  / 
( 4  x.  A
) )  /  A
) )  =  ( ( B ^ 2 )  /  ( 4  x.  A ) ) )
9088, 89eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  0  <  A )  ->  ( A  x.  ( -u ( B  /  ( 2  x.  A ) ) ^
2 ) )  =  ( ( B ^
2 )  /  (
4  x.  A ) ) )
9174, 71mulneg2d 9489 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  0  <  A )  ->  ( B  x.  -u ( B  / 
( 2  x.  A
) ) )  = 
-u ( B  x.  ( B  /  (
2  x.  A ) ) ) )
92 sqval 11443 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
9374, 92syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  0  <  A )  ->  ( B ^ 2 )  =  ( B  x.  B
) )
9493oveq1d 6098 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( 2  x.  A
) )  =  ( ( B  x.  B
)  /  ( 2  x.  A ) ) )
9574, 74, 51, 52divassd 9827 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  0  <  A )  ->  ( ( B  x.  B )  /  ( 2  x.  A ) )  =  ( B  x.  ( B  /  ( 2  x.  A ) ) ) )
9694, 95eqtrd 2470 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( 2  x.  A
) )  =  ( B  x.  ( B  /  ( 2  x.  A ) ) ) )
9796negeqd 9302 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  0  <  A )  ->  -u ( ( B ^ 2 )  /  ( 2  x.  A ) )  = 
-u ( B  x.  ( B  /  (
2  x.  A ) ) ) )
9891, 97eqtr4d 2473 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  0  <  A )  ->  ( B  x.  -u ( B  / 
( 2  x.  A
) ) )  = 
-u ( ( B ^ 2 )  / 
( 2  x.  A
) ) )
9990, 98oveq12d 6101 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  A )  ->  ( ( A  x.  ( -u ( B  /  ( 2  x.  A ) ) ^
2 ) )  +  ( B  x.  -u ( B  /  ( 2  x.  A ) ) ) )  =  ( ( ( B ^ 2 )  /  ( 4  x.  A ) )  +  -u ( ( B ^ 2 )  / 
( 2  x.  A
) ) ) )
1004, 50rerpdivcld 10677 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( 2  x.  A
) )  e.  RR )
101100recnd 9116 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( 2  x.  A
) )  e.  CC )
10238, 101negsubd 9419 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  +  -u ( ( B ^ 2 )  / 
( 2  x.  A
) ) )  =  ( ( ( B ^ 2 )  / 
( 4  x.  A
) )  -  (
( B ^ 2 )  /  ( 2  x.  A ) ) ) )
10399, 102eqtrd 2470 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  A )  ->  ( ( A  x.  ( -u ( B  /  ( 2  x.  A ) ) ^
2 ) )  +  ( B  x.  -u ( B  /  ( 2  x.  A ) ) ) )  =  ( ( ( B ^ 2 )  /  ( 4  x.  A ) )  -  ( ( B ^ 2 )  / 
( 2  x.  A
) ) ) )
104103oveq1d 6098 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  ( (
( A  x.  ( -u ( B  /  (
2  x.  A ) ) ^ 2 ) )  +  ( B  x.  -u ( B  / 
( 2  x.  A
) ) ) )  +  C )  =  ( ( ( ( B ^ 2 )  /  ( 4  x.  A ) )  -  ( ( B ^
2 )  /  (
2  x.  A ) ) )  +  C
) )
10538, 32, 101addsubd 9434 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  A )  ->  ( (
( ( B ^
2 )  /  (
4  x.  A ) )  +  C )  -  ( ( B ^ 2 )  / 
( 2  x.  A
) ) )  =  ( ( ( ( B ^ 2 )  /  ( 4  x.  A ) )  -  ( ( B ^
2 )  /  (
2  x.  A ) ) )  +  C
) )
106104, 105eqtr4d 2473 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  ( (
( A  x.  ( -u ( B  /  (
2  x.  A ) ) ^ 2 ) )  +  ( B  x.  -u ( B  / 
( 2  x.  A
) ) ) )  +  C )  =  ( ( ( ( B ^ 2 )  /  ( 4  x.  A ) )  +  C )  -  (
( B ^ 2 )  /  ( 2  x.  A ) ) ) )
10770, 106breqtrd 4238 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  0  <_  ( ( ( ( B ^ 2 )  / 
( 4  x.  A
) )  +  C
)  -  ( ( B ^ 2 )  /  ( 2  x.  A ) ) ) )
10837, 10readdcld 9117 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  +  C )  e.  RR )
109108, 100subge0d 9618 . . . . . . . . 9  |-  ( (
ph  /\  0  <  A )  ->  ( 0  <_  ( ( ( ( B ^ 2 )  /  ( 4  x.  A ) )  +  C )  -  ( ( B ^
2 )  /  (
2  x.  A ) ) )  <->  ( ( B ^ 2 )  / 
( 2  x.  A
) )  <_  (
( ( B ^
2 )  /  (
4  x.  A ) )  +  C ) ) )
110107, 109mpbid 203 . . . . . . . 8  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( 2  x.  A
) )  <_  (
( ( B ^
2 )  /  (
4  x.  A ) )  +  C ) )
11157, 110eqbrtrd 4234 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  +  ( ( B ^ 2 )  / 
( 4  x.  A
) ) )  <_ 
( ( ( B ^ 2 )  / 
( 4  x.  A
) )  +  C
) )
11237, 10, 37leadd2d 9623 . . . . . . 7  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  <_  C  <->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  +  ( ( B ^ 2 )  / 
( 4  x.  A
) ) )  <_ 
( ( ( B ^ 2 )  / 
( 4  x.  A
) )  +  C
) ) )
113111, 112mpbird 225 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  / 
( 4  x.  A
) )  <_  C
)
11437, 10suble0d 9619 . . . . . 6  |-  ( (
ph  /\  0  <  A )  ->  ( (
( ( B ^
2 )  /  (
4  x.  A ) )  -  C )  <_  0  <->  ( ( B ^ 2 )  / 
( 4  x.  A
) )  <_  C
) )
115113, 114mpbird 225 . . . . 5  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  /  ( 4  x.  A ) )  -  C )  <_ 
0 )
11636, 115eqbrtrd 4234 . . . 4  |-  ( (
ph  /\  0  <  A )  ->  ( (
( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  /  ( 4  x.  A ) )  <_ 
0 )
1174, 13resubcld 9467 . . . . 5  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C )
) )  e.  RR )
118 0re 9093 . . . . . 6  |-  0  e.  RR
119118a1i 11 . . . . 5  |-  ( (
ph  /\  0  <  A )  ->  0  e.  RR )
120117, 119, 20ledivmuld 10699 . . . 4  |-  ( (
ph  /\  0  <  A )  ->  ( (
( ( B ^
2 )  -  (
4  x.  ( A  x.  C ) ) )  /  ( 4  x.  A ) )  <_  0  <->  ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C )
) )  <_  (
( 4  x.  A
)  x.  0 ) ) )
121116, 120mpbid 203 . . 3  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C )
) )  <_  (
( 4  x.  A
)  x.  0 ) )
12221mul01d 9267 . . 3  |-  ( (
ph  /\  0  <  A )  ->  ( (
4  x.  A )  x.  0 )  =  0 )
123121, 122breqtrd 4238 . 2  |-  ( (
ph  /\  0  <  A )  ->  ( ( B ^ 2 )  -  ( 4  x.  ( A  x.  C )
) )  <_  0
)
1249adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  C  e.  RR )
125124ltp1d 9943 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  C  <  ( C  + 
1 ) )
126 peano2re 9241 . . . . . . . . . . . . 13  |-  ( C  e.  RR  ->  ( C  +  1 )  e.  RR )
127124, 126syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( C  +  1 )  e.  RR )
128124, 127ltnegd 9606 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( C  <  ( C  +  1 )  <->  -u ( C  +  1 )  <  -u C
) )
129125, 128mpbid 203 . . . . . . . . . 10  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  -u ( C  +  1 )  <  -u C
)
130 df-neg 9296 . . . . . . . . . 10  |-  -u C  =  ( 0  -  C )
131129, 130syl6breq 4253 . . . . . . . . 9  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  -u ( C  +  1 )  <  ( 0  -  C ) )
132127renegcld 9466 . . . . . . . . . 10  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  -u ( C  +  1 )  e.  RR )
133118a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
0  e.  RR )
134132, 124, 133ltaddsubd 9628 . . . . . . . . 9  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( ( -u ( C  +  1 )  +  C )  <  0  <->  -u ( C  + 
1 )  <  (
0  -  C ) ) )
135131, 134mpbird 225 . . . . . . . 8  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( -u ( C  + 
1 )  +  C
)  <  0 )
136135expr 600 . . . . . . 7  |-  ( (
ph  /\  0  =  A )  ->  ( B  =/=  0  ->  ( -u ( C  +  1 )  +  C )  <  0 ) )
1371adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  B  e.  RR )
138 simprr 735 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  B  =/=  0 )
139132, 137, 138redivcld 9844 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( -u ( C  + 
1 )  /  B
)  e.  RR )
14061adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  A. x  e.  RR  0  <_  ( ( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C ) )
141 oveq1 6090 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( -u ( C  +  1 )  /  B )  -> 
( x ^ 2 )  =  ( (
-u ( C  + 
1 )  /  B
) ^ 2 ) )
142141oveq2d 6099 . . . . . . . . . . . . . . 15  |-  ( x  =  ( -u ( C  +  1 )  /  B )  -> 
( A  x.  (
x ^ 2 ) )  =  ( A  x.  ( ( -u ( C  +  1
)  /  B ) ^ 2 ) ) )
143 oveq2 6091 . . . . . . . . . . . . . . 15  |-  ( x  =  ( -u ( C  +  1 )  /  B )  -> 
( B  x.  x
)  =  ( B  x.  ( -u ( C  +  1 )  /  B ) ) )
144142, 143oveq12d 6101 . . . . . . . . . . . . . 14  |-  ( x  =  ( -u ( C  +  1 )  /  B )  -> 
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  =  ( ( A  x.  ( (
-u ( C  + 
1 )  /  B
) ^ 2 ) )  +  ( B  x.  ( -u ( C  +  1 )  /  B ) ) ) )
145144oveq1d 6098 . . . . . . . . . . . . 13  |-  ( x  =  ( -u ( C  +  1 )  /  B )  -> 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
)  =  ( ( ( A  x.  (
( -u ( C  + 
1 )  /  B
) ^ 2 ) )  +  ( B  x.  ( -u ( C  +  1 )  /  B ) ) )  +  C ) )
146145breq2d 4226 . . . . . . . . . . . 12  |-  ( x  =  ( -u ( C  +  1 )  /  B )  -> 
( 0  <_  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  <->  0  <_  ( (
( A  x.  (
( -u ( C  + 
1 )  /  B
) ^ 2 ) )  +  ( B  x.  ( -u ( C  +  1 )  /  B ) ) )  +  C ) ) )
147146rspcv 3050 . . . . . . . . . . 11  |-  ( (
-u ( C  + 
1 )  /  B
)  e.  RR  ->  ( A. x  e.  RR  0  <_  ( ( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  ->  0  <_  ( ( ( A  x.  ( ( -u ( C  +  1
)  /  B ) ^ 2 ) )  +  ( B  x.  ( -u ( C  + 
1 )  /  B
) ) )  +  C ) ) )
148139, 140, 147sylc 59 . . . . . . . . . 10  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
0  <_  ( (
( A  x.  (
( -u ( C  + 
1 )  /  B
) ^ 2 ) )  +  ( B  x.  ( -u ( C  +  1 )  /  B ) ) )  +  C ) )
149 simprl 734 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
0  =  A )
150149oveq1d 6098 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( 0  x.  (
( -u ( C  + 
1 )  /  B
) ^ 2 ) )  =  ( A  x.  ( ( -u ( C  +  1
)  /  B ) ^ 2 ) ) )
151139recnd 9116 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( -u ( C  + 
1 )  /  B
)  e.  CC )
152 sqcl 11446 . . . . . . . . . . . . . . . 16  |-  ( (
-u ( C  + 
1 )  /  B
)  e.  CC  ->  ( ( -u ( C  +  1 )  /  B ) ^ 2 )  e.  CC )
153151, 152syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( ( -u ( C  +  1 )  /  B ) ^
2 )  e.  CC )
154153mul02d 9266 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( 0  x.  (
( -u ( C  + 
1 )  /  B
) ^ 2 ) )  =  0 )
155150, 154eqtr3d 2472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( A  x.  (
( -u ( C  + 
1 )  /  B
) ^ 2 ) )  =  0 )
156132recnd 9116 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  -u ( C  +  1 )  e.  CC )
157137recnd 9116 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  B  e.  CC )
158156, 157, 138divcan2d 9794 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( B  x.  ( -u ( C  +  1 )  /  B ) )  =  -u ( C  +  1 ) )
159155, 158oveq12d 6101 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( ( A  x.  ( ( -u ( C  +  1 )  /  B ) ^
2 ) )  +  ( B  x.  ( -u ( C  +  1 )  /  B ) ) )  =  ( 0  +  -u ( C  +  1 ) ) )
160156addid2d 9269 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( 0  +  -u ( C  +  1
) )  =  -u ( C  +  1
) )
161159, 160eqtrd 2470 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( ( A  x.  ( ( -u ( C  +  1 )  /  B ) ^
2 ) )  +  ( B  x.  ( -u ( C  +  1 )  /  B ) ) )  =  -u ( C  +  1
) )
162161oveq1d 6098 . . . . . . . . . 10  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( ( ( A  x.  ( ( -u ( C  +  1
)  /  B ) ^ 2 ) )  +  ( B  x.  ( -u ( C  + 
1 )  /  B
) ) )  +  C )  =  (
-u ( C  + 
1 )  +  C
) )
163148, 162breqtrd 4238 . . . . . . . . 9  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
0  <_  ( -u ( C  +  1 )  +  C ) )
164132, 124readdcld 9117 . . . . . . . . . 10  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( -u ( C  + 
1 )  +  C
)  e.  RR )
165 lenlt 9156 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( -u ( C  + 
1 )  +  C
)  e.  RR )  ->  ( 0  <_ 
( -u ( C  + 
1 )  +  C
)  <->  -.  ( -u ( C  +  1 )  +  C )  <  0 ) )
166118, 164, 165sylancr 646 . . . . . . . . 9  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  -> 
( 0  <_  ( -u ( C  +  1 )  +  C )  <->  -.  ( -u ( C  +  1 )  +  C )  <  0
) )
167163, 166mpbid 203 . . . . . . . 8  |-  ( (
ph  /\  ( 0  =  A  /\  B  =/=  0 ) )  ->  -.  ( -u ( C  +  1 )  +  C )  <  0
)
168167expr 600 . . . . . . 7  |-  ( (
ph  /\  0  =  A )  ->  ( B  =/=  0  ->  -.  ( -u ( C  + 
1 )  +  C
)  <  0 ) )
169136, 168pm2.65d 169 . . . . . 6  |-  ( (
ph  /\  0  =  A )  ->  -.  B  =/=  0 )
170 nne 2607 . . . . . 6  |-  ( -.  B  =/=  0  <->  B  =  0 )
171169, 170sylib 190 . . . . 5  |-  ( (
ph  /\  0  =  A )  ->  B  =  0 )
172171sq0id 11477 . . . 4  |-  ( (
ph  /\  0  =  A )  ->  ( B ^ 2 )  =  0 )
173 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  0  =  A )  ->  0  =  A )
174173oveq1d 6098 . . . . . . 7  |-  ( (
ph  /\  0  =  A )  ->  (
0  x.  C )  =  ( A  x.  C ) )
1759recnd 9116 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
176175adantr 453 . . . . . . . 8  |-  ( (
ph  /\  0  =  A )  ->  C  e.  CC )
177176mul02d 9266 . . . . . . 7  |-  ( (
ph  /\  0  =  A )  ->  (
0  x.  C )  =  0 )
178174, 177eqtr3d 2472 . . . . . 6  |-  ( (
ph  /\  0  =  A )  ->  ( A  x.  C )  =  0 )
179178oveq2d 6099 . . . . 5  |-  ( (
ph  /\  0  =  A )  ->  (
4  x.  ( A  x.  C ) )  =  ( 4  x.  0 ) )
18026mul01i 9258 . . . . 5  |-  ( 4  x.  0 )  =  0
181179, 180syl6eq 2486 . . . 4  |-  ( (
ph  /\  0  =  A )  ->  (
4  x.  ( A  x.  C ) )  =  0 )
182172, 181oveq12d 6101 . . 3  |-  ( (
ph  /\  0  =  A )  ->  (
( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  =  ( 0  -  0 ) )
183 0cn 9086 . . . . 5  |-  0  e.  CC
184183subidi 9373 . . . 4  |-  ( 0  -  0 )  =  0
185 0le0 10083 . . . 4  |-  0  <_  0
186184, 185eqbrtri 4233 . . 3  |-  ( 0  -  0 )  <_ 
0
187182, 186syl6eqbr 4251 . 2  |-  ( (
ph  /\  0  =  A )  ->  (
( B ^ 2 )  -  ( 4  x.  ( A  x.  C ) ) )  <_  0 )
188 eqid 2438 . . . 4  |-  if ( 1  <_  ( (
( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )  =  if ( 1  <_  ( (
( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )
1897, 1, 9, 60, 188discr1 11517 . . 3  |-  ( ph  ->  0  <_  A )
190 leloe 9163 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
191118, 7, 190sylancr 646 . . 3  |-  ( ph  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
192189, 191mpbid 203 . 2  |-  ( ph  ->  ( 0  <  A  \/  0  =  A
) )
193123, 187, 192mpjaodan 763 1  |-  ( ph  ->  ( ( B ^
2 )  -  (
4  x.  ( A  x.  C ) ) )  <_  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   ifcif 3741   class class class wbr 4214  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    < clt 9122    <_ cle 9123    - cmin 9293   -ucneg 9294    / cdiv 9679   2c2 10051   4c4 10053   RR+crp 10614   ^cexp 11384
This theorem is referenced by:  normlem6  22619  csbrn  26458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-seq 11326  df-exp 11385
  Copyright terms: Public domain W3C validator