MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dishaus Structured version   Unicode version

Theorem dishaus 17451
Description: A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
dishaus  |-  ( A  e.  V  ->  ~P A  e.  Haus )

Proof of Theorem dishaus
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 17065 . 2  |-  ( A  e.  V  ->  ~P A  e.  Top )
2 simplrl 738 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  x  e.  A )
32snssd 3945 . . . . . 6  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  { x }  C_  A )
4 snex 4408 . . . . . . 7  |-  { x }  e.  _V
54elpw 3807 . . . . . 6  |-  ( { x }  e.  ~P A 
<->  { x }  C_  A )
63, 5sylibr 205 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  { x }  e.  ~P A
)
7 simplrr 739 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  y  e.  A )
87snssd 3945 . . . . . 6  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  { y }  C_  A )
9 snex 4408 . . . . . . 7  |-  { y }  e.  _V
109elpw 3807 . . . . . 6  |-  ( { y }  e.  ~P A 
<->  { y }  C_  A )
118, 10sylibr 205 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  { y }  e.  ~P A
)
12 vex 2961 . . . . . . 7  |-  x  e. 
_V
1312snid 3843 . . . . . 6  |-  x  e. 
{ x }
1413a1i 11 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  x  e.  { x } )
15 vex 2961 . . . . . . 7  |-  y  e. 
_V
1615snid 3843 . . . . . 6  |-  y  e. 
{ y }
1716a1i 11 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  y  e.  { y } )
18 disjsn2 3871 . . . . . 6  |-  ( x  =/=  y  ->  ( { x }  i^i  { y } )  =  (/) )
1918adantl 454 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  ( { x }  i^i  { y } )  =  (/) )
20 eleq2 2499 . . . . . . 7  |-  ( u  =  { x }  ->  ( x  e.  u  <->  x  e.  { x }
) )
21 ineq1 3537 . . . . . . . 8  |-  ( u  =  { x }  ->  ( u  i^i  v
)  =  ( { x }  i^i  v
) )
2221eqeq1d 2446 . . . . . . 7  |-  ( u  =  { x }  ->  ( ( u  i^i  v )  =  (/)  <->  ( { x }  i^i  v )  =  (/) ) )
2320, 223anbi13d 1257 . . . . . 6  |-  ( u  =  { x }  ->  ( ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v )  =  (/) )  <->  ( x  e. 
{ x }  /\  y  e.  v  /\  ( { x }  i^i  v )  =  (/) ) ) )
24 eleq2 2499 . . . . . . 7  |-  ( v  =  { y }  ->  ( y  e.  v  <->  y  e.  {
y } ) )
25 ineq2 3538 . . . . . . . 8  |-  ( v  =  { y }  ->  ( { x }  i^i  v )  =  ( { x }  i^i  { y } ) )
2625eqeq1d 2446 . . . . . . 7  |-  ( v  =  { y }  ->  ( ( { x }  i^i  v
)  =  (/)  <->  ( {
x }  i^i  {
y } )  =  (/) ) )
2724, 263anbi23d 1258 . . . . . 6  |-  ( v  =  { y }  ->  ( ( x  e.  { x }  /\  y  e.  v  /\  ( { x }  i^i  v )  =  (/) ) 
<->  ( x  e.  {
x }  /\  y  e.  { y }  /\  ( { x }  i^i  { y } )  =  (/) ) ) )
2823, 27rspc2ev 3062 . . . . 5  |-  ( ( { x }  e.  ~P A  /\  { y }  e.  ~P A  /\  ( x  e.  {
x }  /\  y  e.  { y }  /\  ( { x }  i^i  { y } )  =  (/) ) )  ->  E. u  e.  ~P  A E. v  e.  ~P  A ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) )
296, 11, 14, 17, 19, 28syl113anc 1197 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  x  =/=  y )  ->  E. u  e.  ~P  A E. v  e.  ~P  A ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) )
3029ex 425 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  =/=  y  ->  E. u  e.  ~P  A E. v  e.  ~P  A ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v )  =  (/) ) ) )
3130ralrimivva 2800 . 2  |-  ( A  e.  V  ->  A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. u  e.  ~P  A E. v  e.  ~P  A ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
32 unipw 4417 . . . 4  |-  U. ~P A  =  A
3332eqcomi 2442 . . 3  |-  A  = 
U. ~P A
3433ishaus 17391 . 2  |-  ( ~P A  e.  Haus  <->  ( ~P A  e.  Top  /\  A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. u  e.  ~P  A E. v  e.  ~P  A ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v )  =  (/) ) ) ) )
351, 31, 34sylanbrc 647 1  |-  ( A  e.  V  ->  ~P A  e.  Haus )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   {csn 3816   U.cuni 4017   Topctop 16963   Hauscha 17377
This theorem is referenced by:  ssoninhaus  26203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-pw 3803  df-sn 3822  df-pr 3823  df-uni 4018  df-top 16968  df-haus 17384
  Copyright terms: Public domain W3C validator