MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj Unicode version

Theorem disj 3604
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
disj  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem disj
StepHypRef Expression
1 df-in 3263 . . . 4  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
21eqeq1i 2387 . . 3  |-  ( ( A  i^i  B )  =  (/)  <->  { x  |  ( x  e.  A  /\  x  e.  B ) }  =  (/) )
3 abeq1 2486 . . 3  |-  ( { x  |  ( x  e.  A  /\  x  e.  B ) }  =  (/)  <->  A. x ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) ) )
4 imnan 412 . . . . 5  |-  ( ( x  e.  A  ->  -.  x  e.  B
)  <->  -.  ( x  e.  A  /\  x  e.  B ) )
5 noel 3568 . . . . . 6  |-  -.  x  e.  (/)
65nbn 337 . . . . 5  |-  ( -.  ( x  e.  A  /\  x  e.  B
)  <->  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) ) )
74, 6bitr2i 242 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  <->  x  e.  (/) )  <->  ( x  e.  A  ->  -.  x  e.  B ) )
87albii 1572 . . 3  |-  ( A. x ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) )  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
92, 3, 83bitri 263 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
10 df-ral 2647 . 2  |-  ( A. x  e.  A  -.  x  e.  B  <->  A. x
( x  e.  A  ->  -.  x  e.  B
) )
119, 10bitr4i 244 1  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1717   {cab 2366   A.wral 2642    i^i cin 3255   (/)c0 3564
This theorem is referenced by:  disjr  3605  disj1  3606  disjne  3609  onint  4708  onxpdisj  4890  zfreg  7489  kmlem4  7959  fin23lem30  8148  fin23lem31  8149  isf32lem3  8161  fpwwe2  8444  renfdisj  9064  injresinjlem  11119  metdsge  18743  spthispth  21420  subfacp1lem1  24637  dfpo2  25129  stoweidlem26  27436  stoweidlem59  27469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ral 2647  df-v 2894  df-dif 3259  df-in 3263  df-nul 3565
  Copyright terms: Public domain W3C validator