MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj1 Unicode version

Theorem disj1 3497
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
disj1  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem disj1
StepHypRef Expression
1 disj 3495 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
2 df-ral 2548 . 2  |-  ( A. x  e.  A  -.  x  e.  B  <->  A. x
( x  e.  A  ->  -.  x  e.  B
) )
31, 2bitri 240 1  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543    i^i cin 3151   (/)c0 3455
This theorem is referenced by:  reldisj  3498  disj3  3499  undif4  3511  disjsn  3693  funun  5296  zfregs2  7415  dfac5lem4  7753  isf32lem9  7987  fzodisj  10900  zfregs2VD  28617  bnj1280  29050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790  df-dif 3155  df-in 3159  df-nul 3456
  Copyright terms: Public domain W3C validator