MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj2 Unicode version

Theorem disj2 3502
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
disj2  |-  ( ( A  i^i  B )  =  (/)  <->  A  C_  ( _V 
\  B ) )

Proof of Theorem disj2
StepHypRef Expression
1 ssv 3198 . 2  |-  A  C_  _V
2 reldisj 3498 . 2  |-  ( A 
C_  _V  ->  ( ( A  i^i  B )  =  (/)  <->  A  C_  ( _V 
\  B ) ) )
31, 2ax-mp 8 1  |-  ( ( A  i^i  B )  =  (/)  <->  A  C_  ( _V 
\  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455
This theorem is referenced by:  ssindif0  3508  intirr  5061  setsres  13174  setscom  13176  opsrtoslem2  16226  clscon  17156  cldsubg  17793  f1omvdco3  27392  psgnunilem5  27417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3456
  Copyright terms: Public domain W3C validator