MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1d Structured version   Unicode version

Theorem disjeq1d 4190
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
disjeq1d  |-  ( ph  ->  (Disj  x  e.  A C 
<-> Disj  x  e.  B C
) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem disjeq1d
StepHypRef Expression
1 disjeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 disjeq1 4189 . 2  |-  ( A  =  B  ->  (Disj  x  e.  A C  <-> Disj  x  e.  B C ) )
31, 2syl 16 1  |-  ( ph  ->  (Disj  x  e.  A C 
<-> Disj  x  e.  B C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652  Disj wdisj 4182
This theorem is referenced by:  disjeq12d  4191  disjxiun  4209  disjdifprg  24017  disjdifprg2  24018  measxun2  24564  measssd  24569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-rmo 2713  df-in 3327  df-ss 3334  df-disj 4183
  Copyright terms: Public domain W3C validator