MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1d Unicode version

Theorem disjeq1d 4001
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
disjeq1d  |-  ( ph  ->  (Disj  x  e.  A C 
<-> Disj  x  e.  B C
) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem disjeq1d
StepHypRef Expression
1 disjeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 disjeq1 4000 . 2  |-  ( A  =  B  ->  (Disj  x  e.  A C  <-> Disj  x  e.  B C ) )
31, 2syl 15 1  |-  ( ph  ->  (Disj  x  e.  A C 
<-> Disj  x  e.  B C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623  Disj wdisj 3993
This theorem is referenced by:  disjeq12d  4002  disjxiun  4020  disjdifprg  23352  disjdifprg2  23353  measxun2  23538  measssd  23543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-rmo 2551  df-in 3159  df-ss 3166  df-disj 3994
  Copyright terms: Public domain W3C validator