MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq2 Unicode version

Theorem disjeq2 4013
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq2  |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A B  <-> Disj  x  e.  A C ) )

Proof of Theorem disjeq2
StepHypRef Expression
1 eqimss2 3244 . . . 4  |-  ( B  =  C  ->  C  C_  B )
21ralimi 2631 . . 3  |-  ( A. x  e.  A  B  =  C  ->  A. x  e.  A  C  C_  B
)
3 disjss2 4012 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  (Disj  x  e.  A B  -> Disj  x  e.  A C ) )
42, 3syl 15 . 2  |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A B  -> Disj  x  e.  A C ) )
5 eqimss 3243 . . . 4  |-  ( B  =  C  ->  B  C_  C )
65ralimi 2631 . . 3  |-  ( A. x  e.  A  B  =  C  ->  A. x  e.  A  B  C_  C
)
7 disjss2 4012 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A C  -> Disj  x  e.  A B ) )
86, 7syl 15 . 2  |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A C  -> Disj  x  e.  A B ) )
94, 8impbid 183 1  |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A B  <-> Disj  x  e.  A C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632   A.wral 2556    C_ wss 3165  Disj wdisj 4009
This theorem is referenced by:  disjeq2dv  4014  voliun  18927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-ral 2561  df-rmo 2564  df-in 3172  df-ss 3179  df-disj 4010
  Copyright terms: Public domain W3C validator