Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq2 Structured version   Unicode version

Theorem disjeq2 4188
 Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq2 Disj Disj

Proof of Theorem disjeq2
StepHypRef Expression
1 eqimss2 3403 . . . 4
21ralimi 2783 . . 3
3 disjss2 4187 . . 3 Disj Disj
42, 3syl 16 . 2 Disj Disj
5 eqimss 3402 . . . 4
65ralimi 2783 . . 3
7 disjss2 4187 . . 3 Disj Disj
86, 7syl 16 . 2 Disj Disj
94, 8impbid 185 1 Disj Disj
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wceq 1653  wral 2707   wss 3322  Disj wdisj 4184 This theorem is referenced by:  disjeq2dv  4189  voliun  19450  mblfinlem2  26246  voliunnfl  26252 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-ral 2712  df-rmo 2715  df-in 3329  df-ss 3336  df-disj 4185
 Copyright terms: Public domain W3C validator