Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq2dv Structured version   Unicode version

Theorem disjeq2dv 4179
 Description: Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq2dv.1
Assertion
Ref Expression
disjeq2dv Disj Disj
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem disjeq2dv
StepHypRef Expression
1 disjeq2dv.1 . . 3
21ralrimiva 2781 . 2
3 disjeq2 4178 . 2 Disj Disj
42, 3syl 16 1 Disj Disj
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  wral 2697  Disj wdisj 4174 This theorem is referenced by:  disjeq12d  4183  iunmbl  19439  uniioovol  19463  voliunnfl  26240 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-ral 2702  df-rmo 2705  df-in 3319  df-ss 3326  df-disj 4175
 Copyright terms: Public domain W3C validator