MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disji2 Structured version   Unicode version

Theorem disji2 4202
Description: Property of a disjoint collection: if  B ( X )  =  C and  B ( Y )  =  D, and  X  =/=  Y, then  C and  D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1  |-  ( x  =  X  ->  B  =  C )
disji.2  |-  ( x  =  Y  ->  B  =  D )
Assertion
Ref Expression
disji2  |-  ( (Disj  x  e.  A B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Distinct variable groups:    x, A    x, C    x, D    x, X    x, Y
Allowed substitution hint:    B( x)

Proof of Theorem disji2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2603 . . 3  |-  ( X  =/=  Y  <->  -.  X  =  Y )
2 disjors 4201 . . . . . 6  |-  (Disj  x  e.  A B  <->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
3 eqeq1 2444 . . . . . . . 8  |-  ( y  =  X  ->  (
y  =  z  <->  X  =  z ) )
4 nfcv 2574 . . . . . . . . . . 11  |-  F/_ x X
5 nfcv 2574 . . . . . . . . . . 11  |-  F/_ x C
6 disji.1 . . . . . . . . . . 11  |-  ( x  =  X  ->  B  =  C )
74, 5, 6csbhypf 3288 . . . . . . . . . 10  |-  ( y  =  X  ->  [_ y  /  x ]_ B  =  C )
87ineq1d 3543 . . . . . . . . 9  |-  ( y  =  X  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  [_ z  /  x ]_ B ) )
98eqeq1d 2446 . . . . . . . 8  |-  ( y  =  X  ->  (
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) )
103, 9orbi12d 692 . . . . . . 7  |-  ( y  =  X  ->  (
( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) 
<->  ( X  =  z  \/  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) ) )
11 eqeq2 2447 . . . . . . . 8  |-  ( z  =  Y  ->  ( X  =  z  <->  X  =  Y ) )
12 nfcv 2574 . . . . . . . . . . 11  |-  F/_ x Y
13 nfcv 2574 . . . . . . . . . . 11  |-  F/_ x D
14 disji.2 . . . . . . . . . . 11  |-  ( x  =  Y  ->  B  =  D )
1512, 13, 14csbhypf 3288 . . . . . . . . . 10  |-  ( z  =  Y  ->  [_ z  /  x ]_ B  =  D )
1615ineq2d 3544 . . . . . . . . 9  |-  ( z  =  Y  ->  ( C  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  D ) )
1716eqeq1d 2446 . . . . . . . 8  |-  ( z  =  Y  ->  (
( C  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  D )  =  (/) ) )
1811, 17orbi12d 692 . . . . . . 7  |-  ( z  =  Y  ->  (
( X  =  z  \/  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) 
<->  ( X  =  Y  \/  ( C  i^i  D )  =  (/) ) ) )
1910, 18rspc2v 3060 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  ( X  =  Y  \/  ( C  i^i  D )  =  (/) ) ) )
202, 19syl5bi 210 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  (Disj  x  e.  A B  ->  ( X  =  Y  \/  ( C  i^i  D )  =  (/) ) ) )
2120impcom 421 . . . 4  |-  ( (Disj  x  e.  A B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( X  =  Y  \/  ( C  i^i  D )  =  (/) ) )
2221ord 368 . . 3  |-  ( (Disj  x  e.  A B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( -.  X  =  Y  ->  ( C  i^i  D
)  =  (/) ) )
231, 22syl5bi 210 . 2  |-  ( (Disj  x  e.  A B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) )
24233impia 1151 1  |-  ( (Disj  x  e.  A B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   [_csb 3253    i^i cin 3321   (/)c0 3630  Disj wdisj 4185
This theorem is referenced by:  disji  4203  disjxiun  4212  voliunlem1  19449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-in 3329  df-nul 3631  df-disj 4186
  Copyright terms: Public domain W3C validator