MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjiunOLD Structured version   Unicode version

Theorem disjiunOLD 4195
Description: A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
disjiunOLD  |-  ( ( A. y E* x
( x  e.  A  /\  y  e.  B
)  /\  ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) ) )  ->  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B
)  =  (/) )
Distinct variable groups:    x, y, A    y, B    x, C, y    x, D, y
Allowed substitution hint:    B( x)

Proof of Theorem disjiunOLD
StepHypRef Expression
1 dfdisj2 4176 . 2  |-  (Disj  x  e.  A B  <->  A. y E* x ( x  e.  A  /\  y  e.  B ) )
2 disjiun 4194 . 2  |-  ( (Disj  x  e.  A B  /\  ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) ) )  -> 
( U_ x  e.  C  B  i^i  U_ x  e.  D  B )  =  (/) )
31, 2sylanbr 460 1  |-  ( ( A. y E* x
( x  e.  A  /\  y  e.  B
)  /\  ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) ) )  ->  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B
)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725   E*wmo 2281    i^i cin 3311    C_ wss 3312   (/)c0 3620   U_ciun 4085  Disj wdisj 4174
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rmo 2705  df-v 2950  df-dif 3315  df-in 3319  df-ss 3326  df-nul 3621  df-iun 4087  df-disj 4175
  Copyright terms: Public domain W3C validator