Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjmoOLD Structured version   Unicode version

Theorem disjmoOLD 4222
 Description: Two ways to say that a collection for is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
disjmo.1
Assertion
Ref Expression
disjmoOLD
Distinct variable groups:   ,,,   ,,   ,,
Allowed substitution hints:   ()   ()

Proof of Theorem disjmoOLD
StepHypRef Expression
1 dfdisj2 4209 . 2 Disj
2 disjmo.1 . . 3
32disjor 4221 . 2 Disj
41, 3bitr3i 244 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wo 359   wa 360  wal 1550   wceq 1653   wcel 1727  wmo 2288  wral 2711   cin 3305  c0 3613  Disj wdisj 4207 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rmo 2719  df-v 2964  df-dif 3309  df-in 3313  df-nul 3614  df-disj 4208
 Copyright terms: Public domain W3C validator