Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjors Structured version   Unicode version

Theorem disjors 4200
 Description: Two ways to say that a collection for is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjors Disj
Distinct variable groups:   ,,,   ,,
Allowed substitution hint:   ()

Proof of Theorem disjors
StepHypRef Expression
1 nfcv 2574 . . 3
2 nfcsb1v 3285 . . 3
3 csbeq1a 3261 . . 3
41, 2, 3cbvdisj 4194 . 2 Disj Disj
5 csbeq1 3256 . . 3
65disjor 4198 . 2 Disj
74, 6bitri 242 1 Disj
 Colors of variables: wff set class Syntax hints:   wb 178   wo 359   wceq 1653  wral 2707  csb 3253   cin 3321  c0 3630  Disj wdisj 4184 This theorem is referenced by:  disji2  4201  disjprg  4210  disjxiun  4211  disjxun  4212  iundisj2  19445  disji2f  24021  disjpreima  24028  disjxpin  24030  iundisj2f  24032  iundisj2fi  24155 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-in 3329  df-nul 3631  df-disj 4185
 Copyright terms: Public domain W3C validator