Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjr Unicode version

Theorem disjr 3509
 Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
disjr
Distinct variable groups:   ,   ,

Proof of Theorem disjr
StepHypRef Expression
1 incom 3374 . . 3
21eqeq1i 2303 . 2
3 disj 3508 . 2
42, 3bitri 240 1
 Colors of variables: wff set class Syntax hints:   wn 3   wb 176   wceq 1632   wcel 1696  wral 2556   cin 3164  c0 3468 This theorem is referenced by:  zfreg2  7326  kqdisj  17439  iccntr  18342  bsstrs  26249  disjrOLD  26463  stoweidlem57  27909 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-v 2803  df-dif 3168  df-in 3172  df-nul 3469
 Copyright terms: Public domain W3C validator