Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss2 Structured version   Unicode version

Theorem disjss2 4188
 Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss2 Disj Disj

Proof of Theorem disjss2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssel 3344 . . . . 5
21ralimi 2783 . . . 4
3 rmoim 3135 . . . 4
42, 3syl 16 . . 3
54alimdv 1632 . 2
6 df-disj 4186 . 2 Disj
7 df-disj 4186 . 2 Disj
85, 6, 73imtr4g 263 1 Disj Disj
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1550   wcel 1726  wral 2707  wrmo 2710   wss 3322  Disj wdisj 4185 This theorem is referenced by:  disjeq2  4189  0disj  4208  uniioombllem2  19480  uniioombllem4  19483  usgreghash2spotv  28529 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-ral 2712  df-rmo 2715  df-in 3329  df-ss 3336  df-disj 4186
 Copyright terms: Public domain W3C validator