Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissym1 Structured version   Unicode version

Theorem dissym1 26171
Description: A symmetry with  \/.

See negsym1 26167 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

Assertion
Ref Expression
dissym1  |-  ( ( ps  \/  ( ps  \/  F.  ) )  ->  ( ps  \/  ph ) )

Proof of Theorem dissym1
StepHypRef Expression
1 orc 375 . 2  |-  ( ps 
->  ( ps  \/  ph ) )
2 falim 1337 . . 3  |-  (  F. 
->  ph )
32orim2i 505 . 2  |-  ( ( ps  \/  F.  )  ->  ( ps  \/  ph ) )
41, 3jaoi 369 1  |-  ( ( ps  \/  ( ps  \/  F.  ) )  ->  ( ps  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    F. wfal 1326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-tru 1328  df-fal 1329
  Copyright terms: Public domain W3C validator