MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem1pr Unicode version

Theorem distrlem1pr 8665
Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996.) (Revised by Mario Carneiro, 13-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem1pr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  C_  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) )

Proof of Theorem distrlem1pr
Dummy variables  x  y  z  w  v 
f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 8658 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2 df-mp 8624 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  { f  |  E. g  e.  y  E. h  e.  z  f  =  ( g  .Q  h ) } )
3 mulclnq 8587 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
42, 3genpelv 8640 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v ) ) )
51, 4sylan2 460 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v ) ) )
653impb 1147 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C
) w  =  ( x  .Q  v ) ) )
7 df-plp 8623 . . . . . . . . . . 11  |-  +P.  =  ( w  e.  P. ,  x  e.  P.  |->  { f  |  E. g  e.  w  E. h  e.  x  f  =  ( g  +Q  h ) } )
8 addclnq 8585 . . . . . . . . . . 11  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
97, 8genpelv 8640 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z ) ) )
1093adant1 973 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z
) ) )
1110adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z
) ) )
12 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  w  =  ( x  .Q  v ) )
13 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  v  =  ( y  +Q  z ) )
14 oveq2 5882 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  +Q  z )  ->  (
x  .Q  v )  =  ( x  .Q  ( y  +Q  z
) ) )
1514eqeq2d 2307 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  +Q  z )  ->  (
w  =  ( x  .Q  v )  <->  w  =  ( x  .Q  (
y  +Q  z ) ) ) )
1615biimpac 472 . . . . . . . . . . . . 13  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( x  .Q  ( y  +Q  z
) ) )
17 distrnq 8601 . . . . . . . . . . . . 13  |-  ( x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) )
1816, 17syl6eq 2344 . . . . . . . . . . . 12  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) )
1912, 13, 18syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  w  =  ( ( x  .Q  y
)  +Q  ( x  .Q  z ) ) )
20 mulclpr 8660 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
21203adant3 975 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
2221ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( A  .P.  B )  e.  P. )
23 mulclpr 8660 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
24233adant2 974 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
2524ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( A  .P.  C )  e.  P. )
26 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  y  e.  B )
272, 3genpprecl 8641 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  .Q  y )  e.  ( A  .P.  B ) ) )
28273adant3 975 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( x  .Q  y )  e.  ( A  .P.  B ) ) )
2928impl 603 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  A
)  /\  y  e.  B )  ->  (
x  .Q  y )  e.  ( A  .P.  B ) )
3029adantlrr 701 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  y  e.  B )  ->  ( x  .Q  y
)  e.  ( A  .P.  B ) )
3126, 30sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( x  .Q  y )  e.  ( A  .P.  B ) )
32 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  z  e.  C )
332, 3genpprecl 8641 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( x  e.  A  /\  z  e.  C )  ->  (
x  .Q  z )  e.  ( A  .P.  C ) ) )
34333adant2 974 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  z  e.  C
)  ->  ( x  .Q  z )  e.  ( A  .P.  C ) ) )
3534impl 603 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  A
)  /\  z  e.  C )  ->  (
x  .Q  z )  e.  ( A  .P.  C ) )
3635adantlrr 701 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  z  e.  C )  ->  ( x  .Q  z
)  e.  ( A  .P.  C ) )
3732, 36sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( x  .Q  z )  e.  ( A  .P.  C ) )
387, 8genpprecl 8641 . . . . . . . . . . . . 13  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( ( x  .Q  y )  e.  ( A  .P.  B
)  /\  ( x  .Q  z )  e.  ( A  .P.  C ) )  ->  ( (
x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
3938imp 418 . . . . . . . . . . . 12  |-  ( ( ( ( A  .P.  B )  e.  P.  /\  ( A  .P.  C )  e.  P. )  /\  ( ( x  .Q  y )  e.  ( A  .P.  B )  /\  ( x  .Q  z )  e.  ( A  .P.  C ) ) )  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )
4022, 25, 31, 37, 39syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( ( x  .Q  y )  +Q  ( x  .Q  z
) )  e.  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
4119, 40eqeltrd 2370 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  w  e.  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
4241exp32 588 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
( y  e.  B  /\  z  e.  C
)  ->  ( v  =  ( y  +Q  z )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
4342rexlimdvv 2686 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  ( E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
4411, 43sylbid 206 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
v  e.  ( B  +P.  C )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
4544exp32 588 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  A  -> 
( w  =  ( x  .Q  v )  ->  ( v  e.  ( B  +P.  C
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) )
4645com34 77 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  A  -> 
( v  e.  ( B  +P.  C )  ->  ( w  =  ( x  .Q  v
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) )
4746imp3a 420 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  v  e.  ( B  +P.  C ) )  ->  ( w  =  ( x  .Q  v
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
4847rexlimdvv 2686 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
496, 48sylbid 206 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
5049ssrdv 3198 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  C_  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557    C_ wss 3165  (class class class)co 5874    +Q cplq 8493    .Q cmq 8494   P.cnp 8497    +P. cpp 8499    .P. cmp 8500
This theorem is referenced by:  distrpr  8668
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621  df-plp 8623  df-mp 8624
  Copyright terms: Public domain W3C validator