MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem1pr Unicode version

Theorem distrlem1pr 8649
Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996.) (Revised by Mario Carneiro, 13-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem1pr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  C_  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) )

Proof of Theorem distrlem1pr
Dummy variables  x  y  z  w  v 
f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 8642 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2 df-mp 8608 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  { f  |  E. g  e.  y  E. h  e.  z  f  =  ( g  .Q  h ) } )
3 mulclnq 8571 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
42, 3genpelv 8624 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v ) ) )
51, 4sylan2 460 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v ) ) )
653impb 1147 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C
) w  =  ( x  .Q  v ) ) )
7 df-plp 8607 . . . . . . . . . . 11  |-  +P.  =  ( w  e.  P. ,  x  e.  P.  |->  { f  |  E. g  e.  w  E. h  e.  x  f  =  ( g  +Q  h ) } )
8 addclnq 8569 . . . . . . . . . . 11  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
97, 8genpelv 8624 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z ) ) )
1093adant1 973 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z
) ) )
1110adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z
) ) )
12 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  w  =  ( x  .Q  v ) )
13 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  v  =  ( y  +Q  z ) )
14 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  +Q  z )  ->  (
x  .Q  v )  =  ( x  .Q  ( y  +Q  z
) ) )
1514eqeq2d 2294 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  +Q  z )  ->  (
w  =  ( x  .Q  v )  <->  w  =  ( x  .Q  (
y  +Q  z ) ) ) )
1615biimpac 472 . . . . . . . . . . . . 13  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( x  .Q  ( y  +Q  z
) ) )
17 distrnq 8585 . . . . . . . . . . . . 13  |-  ( x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) )
1816, 17syl6eq 2331 . . . . . . . . . . . 12  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) )
1912, 13, 18syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  w  =  ( ( x  .Q  y
)  +Q  ( x  .Q  z ) ) )
20 mulclpr 8644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
21203adant3 975 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
2221ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( A  .P.  B )  e.  P. )
23 mulclpr 8644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
24233adant2 974 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
2524ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( A  .P.  C )  e.  P. )
26 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  y  e.  B )
272, 3genpprecl 8625 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  .Q  y )  e.  ( A  .P.  B ) ) )
28273adant3 975 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( x  .Q  y )  e.  ( A  .P.  B ) ) )
2928impl 603 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  A
)  /\  y  e.  B )  ->  (
x  .Q  y )  e.  ( A  .P.  B ) )
3029adantlrr 701 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  y  e.  B )  ->  ( x  .Q  y
)  e.  ( A  .P.  B ) )
3126, 30sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( x  .Q  y )  e.  ( A  .P.  B ) )
32 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  z  e.  C )
332, 3genpprecl 8625 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( x  e.  A  /\  z  e.  C )  ->  (
x  .Q  z )  e.  ( A  .P.  C ) ) )
34333adant2 974 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  z  e.  C
)  ->  ( x  .Q  z )  e.  ( A  .P.  C ) ) )
3534impl 603 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  A
)  /\  z  e.  C )  ->  (
x  .Q  z )  e.  ( A  .P.  C ) )
3635adantlrr 701 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  z  e.  C )  ->  ( x  .Q  z
)  e.  ( A  .P.  C ) )
3732, 36sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( x  .Q  z )  e.  ( A  .P.  C ) )
387, 8genpprecl 8625 . . . . . . . . . . . . 13  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( ( x  .Q  y )  e.  ( A  .P.  B
)  /\  ( x  .Q  z )  e.  ( A  .P.  C ) )  ->  ( (
x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
3938imp 418 . . . . . . . . . . . 12  |-  ( ( ( ( A  .P.  B )  e.  P.  /\  ( A  .P.  C )  e.  P. )  /\  ( ( x  .Q  y )  e.  ( A  .P.  B )  /\  ( x  .Q  z )  e.  ( A  .P.  C ) ) )  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )
4022, 25, 31, 37, 39syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( ( x  .Q  y )  +Q  ( x  .Q  z
) )  e.  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
4119, 40eqeltrd 2357 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  w  e.  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
4241exp32 588 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
( y  e.  B  /\  z  e.  C
)  ->  ( v  =  ( y  +Q  z )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
4342rexlimdvv 2673 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  ( E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
4411, 43sylbid 206 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
v  e.  ( B  +P.  C )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
4544exp32 588 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  A  -> 
( w  =  ( x  .Q  v )  ->  ( v  e.  ( B  +P.  C
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) )
4645com34 77 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  A  -> 
( v  e.  ( B  +P.  C )  ->  ( w  =  ( x  .Q  v
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) )
4746imp3a 420 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  v  e.  ( B  +P.  C ) )  ->  ( w  =  ( x  .Q  v
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
4847rexlimdvv 2673 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
496, 48sylbid 206 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
5049ssrdv 3185 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  C_  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544    C_ wss 3152  (class class class)co 5858    +Q cplq 8477    .Q cmq 8478   P.cnp 8481    +P. cpp 8483    .P. cmp 8484
This theorem is referenced by:  distrpr  8652
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-plp 8607  df-mp 8608
  Copyright terms: Public domain W3C validator