MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem5pr Structured version   Unicode version

Theorem distrlem5pr 8904
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem5pr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  .P.  B
)  +P.  ( A  .P.  C ) )  C_  ( A  .P.  ( B  +P.  C ) ) )

Proof of Theorem distrlem5pr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 8897 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
213adant3 977 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
3 mulclpr 8897 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
433adant2 976 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
5 df-plp 8860 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  { f  |  E. g  e.  x  E. h  e.  y  f  =  ( g  +Q  h ) } )
6 addclnq 8822 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
75, 6genpelv 8877 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( w  e.  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) )  <->  E. v  e.  ( A  .P.  B
) E. u  e.  ( A  .P.  C
) w  =  ( v  +Q  u ) ) )
82, 4, 7syl2anc 643 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) )  <->  E. v  e.  ( A  .P.  B
) E. u  e.  ( A  .P.  C
) w  =  ( v  +Q  u ) ) )
9 df-mp 8861 . . . . . . . 8  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. g  e.  w  E. h  e.  v  x  =  ( g  .Q  h ) } )
10 mulclnq 8824 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
119, 10genpelv 8877 . . . . . . 7  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( u  e.  ( A  .P.  C )  <->  E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z ) ) )
12113adant2 976 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
u  e.  ( A  .P.  C )  <->  E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z
) ) )
1312anbi2d 685 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( A  .P.  B )  /\  u  e.  ( A  .P.  C ) )  <->  ( v  e.  ( A  .P.  B
)  /\  E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z
) ) ) )
14 df-mp 8861 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { f  |  E. g  e.  w  E. h  e.  v  f  =  ( g  .Q  h ) } )
1514, 10genpelv 8877 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( v  e.  ( A  .P.  B )  <->  E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y ) ) )
16153adant3 977 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( A  .P.  B )  <->  E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y
) ) )
17 distrlem4pr 8903 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  A  /\  z  e.  C )
) )  ->  (
( x  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( A  .P.  ( B  +P.  C ) ) )
18 oveq12 6090 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( v  +Q  u
)  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
1918eqeq2d 2447 . . . . . . . . . . . . . . . . 17  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  <-> 
w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
20 eleq1 2496 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( A  .P.  ( B  +P.  C ) ) ) )
2119, 20syl6bi 220 . . . . . . . . . . . . . . . 16  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  ( w  e.  ( A  .P.  ( B  +P.  C ) )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( A  .P.  ( B  +P.  C ) ) ) ) )
2221imp 419 . . . . . . . . . . . . . . 15  |-  ( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u
) )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( A  .P.  ( B  +P.  C ) ) ) )
2317, 22syl5ibrcom 214 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  A  /\  z  e.  C )
) )  ->  (
( ( v  =  ( x  .Q  y
)  /\  u  =  ( f  .Q  z
) )  /\  w  =  ( v  +Q  u ) )  ->  w  e.  ( A  .P.  ( B  +P.  C
) ) ) )
2423exp4b 591 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( x  e.  A  /\  y  e.  B )  /\  (
f  e.  A  /\  z  e.  C )
)  ->  ( (
v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2524com3l 77 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( f  e.  A  /\  z  e.  C ) )  -> 
( ( v  =  ( x  .Q  y
)  /\  u  =  ( f  .Q  z
) )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2625exp4b 591 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ( f  e.  A  /\  z  e.  C )  ->  (
v  =  ( x  .Q  y )  -> 
( u  =  ( f  .Q  z )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C
) ) ) ) ) ) ) )
2726com23 74 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( v  =  ( x  .Q  y )  ->  ( ( f  e.  A  /\  z  e.  C )  ->  (
u  =  ( f  .Q  z )  -> 
( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) )
2827rexlimivv 2835 . . . . . . . . 9  |-  ( E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y )  ->  (
( f  e.  A  /\  z  e.  C
)  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2928rexlimdvv 2836 . . . . . . . 8  |-  ( E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y )  ->  ( E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3029com3r 75 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  A  E. y  e.  B  v  =  ( x  .Q  y )  ->  ( E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C
) ) ) ) ) )
3116, 30sylbid 207 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( A  .P.  B )  -> 
( E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3231imp3a 421 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( A  .P.  B )  /\  E. f  e.  A  E. z  e.  C  u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) )
3313, 32sylbid 207 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( A  .P.  B )  /\  u  e.  ( A  .P.  C ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) ) )
3433rexlimdvv 2836 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. v  e.  ( A  .P.  B ) E. u  e.  ( A  .P.  C ) w  =  ( v  +Q  u )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) )
358, 34sylbid 207 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) )  ->  w  e.  ( A  .P.  ( B  +P.  C ) ) ) )
3635ssrdv 3354 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A  .P.  B
)  +P.  ( A  .P.  C ) )  C_  ( A  .P.  ( B  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2706    C_ wss 3320  (class class class)co 6081    +Q cplq 8730    .Q cmq 8731   P.cnp 8734    +P. cpp 8736    .P. cmp 8737
This theorem is referenced by:  distrpr  8905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-omul 6729  df-er 6905  df-ni 8749  df-pli 8750  df-mi 8751  df-lti 8752  df-plpq 8785  df-mpq 8786  df-ltpq 8787  df-enq 8788  df-nq 8789  df-erq 8790  df-plq 8791  df-mq 8792  df-1nq 8793  df-rq 8794  df-ltnq 8795  df-np 8858  df-plp 8860  df-mp 8861
  Copyright terms: Public domain W3C validator