MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrpi Unicode version

Theorem distrpi 8701
Description: Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
distrpi  |-  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C ) )

Proof of Theorem distrpi
StepHypRef Expression
1 pinn 8681 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 8681 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 8681 . . . 4  |-  ( C  e.  N.  ->  C  e.  om )
4 nndi 6795 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
51, 2, 3, 4syl3an 1226 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
6 addclpi 8695 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  e.  N. )
7 mulpiord 8688 . . . . . 6  |-  ( ( A  e.  N.  /\  ( B  +N  C
)  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( A  .o  ( B  +N  C
) ) )
86, 7sylan2 461 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  +N  C
) )  =  ( A  .o  ( B  +N  C ) ) )
9 addpiord 8687 . . . . . . 7  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  =  ( B  +o  C ) )
109oveq2d 6029 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  .o  ( B  +N  C ) )  =  ( A  .o  ( B  +o  C
) ) )
1110adantl 453 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .o  ( B  +N  C
) )  =  ( A  .o  ( B  +o  C ) ) )
128, 11eqtrd 2412 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  +N  C
) )  =  ( A  .o  ( B  +o  C ) ) )
13123impb 1149 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( A  .o  ( B  +o  C ) ) )
14 mulclpi 8696 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
15 mulclpi 8696 . . . . . 6  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  e.  N. )
16 addpiord 8687 . . . . . 6  |-  ( ( ( A  .N  B
)  e.  N.  /\  ( A  .N  C
)  e.  N. )  ->  ( ( A  .N  B )  +N  ( A  .N  C ) )  =  ( ( A  .N  B )  +o  ( A  .N  C
) ) )
1714, 15, 16syl2an 464 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .N  B )  +N  ( A  .N  C
) )  =  ( ( A  .N  B
)  +o  ( A  .N  C ) ) )
18 mulpiord 8688 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
19 mulpiord 8688 . . . . . 6  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
2018, 19oveqan12d 6032 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .N  B )  +o  ( A  .N  C
) )  =  ( ( A  .o  B
)  +o  ( A  .o  C ) ) )
2117, 20eqtrd 2412 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .N  B )  +N  ( A  .N  C
) )  =  ( ( A  .o  B
)  +o  ( A  .o  C ) ) )
22213impdi 1239 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  +N  ( A  .N  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) )
235, 13, 223eqtr4d 2422 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C ) ) )
24 dmaddpi 8693 . . 3  |-  dom  +N  =  ( N.  X.  N. )
25 0npi 8685 . . 3  |-  -.  (/)  e.  N.
26 dmmulpi 8694 . . 3  |-  dom  .N  =  ( N.  X.  N. )
2724, 25, 26ndmovdistr 6168 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C
) ) )
2823, 27pm2.61i 158 1  |-  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   omcom 4778  (class class class)co 6013    +o coa 6650    .o comu 6651   N.cnpi 8645    +N cpli 8646    .N cmi 8647
This theorem is referenced by:  adderpqlem  8757  addassnq  8761  distrnq  8764  ltanq  8774  ltexnq  8778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-recs 6562  df-rdg 6597  df-oadd 6657  df-omul 6658  df-ni 8675  df-pli 8676  df-mi 8677
  Copyright terms: Public domain W3C validator