MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgcl Unicode version

Theorem ditgcl 19702
Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x  |-  ( ph  ->  X  e.  RR )
ditgcl.y  |-  ( ph  ->  Y  e.  RR )
ditgcl.a  |-  ( ph  ->  A  e.  ( X [,] Y ) )
ditgcl.b  |-  ( ph  ->  B  e.  ( X [,] Y ) )
ditgcl.c  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  C  e.  V )
ditgcl.i  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  C )  e.  L ^1 )
Assertion
Ref Expression
ditgcl  |-  ( ph  ->  S__ [ A  ->  B ] C  _d x  e.  CC )
Distinct variable groups:    x, A    x, B    ph, x    x, V    x, X    x, Y
Allowed substitution hint:    C( x)

Proof of Theorem ditgcl
StepHypRef Expression
1 ditgcl.a . . . 4  |-  ( ph  ->  A  e.  ( X [,] Y ) )
2 ditgcl.x . . . . 5  |-  ( ph  ->  X  e.  RR )
3 ditgcl.y . . . . 5  |-  ( ph  ->  Y  e.  RR )
4 elicc2 10935 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
52, 3, 4syl2anc 643 . . . 4  |-  ( ph  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
61, 5mpbid 202 . . 3  |-  ( ph  ->  ( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) )
76simp1d 969 . 2  |-  ( ph  ->  A  e.  RR )
8 ditgcl.b . . . 4  |-  ( ph  ->  B  e.  ( X [,] Y ) )
9 elicc2 10935 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
102, 3, 9syl2anc 643 . . . 4  |-  ( ph  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
118, 10mpbid 202 . . 3  |-  ( ph  ->  ( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) )
1211simp1d 969 . 2  |-  ( ph  ->  B  e.  RR )
13 simpr 448 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  A  <_  B )
1413ditgpos 19700 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  B ] C  _d x  =  S. ( A (,) B ) C  _d x )
152rexrd 9094 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR* )
166simp2d 970 . . . . . . . . 9  |-  ( ph  ->  X  <_  A )
17 iooss1 10911 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  X  <_  A )  ->  ( A (,) B )  C_  ( X (,) B ) )
1815, 16, 17syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( A (,) B
)  C_  ( X (,) B ) )
193rexrd 9094 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR* )
2011simp3d 971 . . . . . . . . 9  |-  ( ph  ->  B  <_  Y )
21 iooss2 10912 . . . . . . . . 9  |-  ( ( Y  e.  RR*  /\  B  <_  Y )  ->  ( X (,) B )  C_  ( X (,) Y ) )
2219, 20, 21syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( X (,) B
)  C_  ( X (,) Y ) )
2318, 22sstrd 3322 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( X (,) Y ) )
2423sselda 3312 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( X (,) Y ) )
25 ditgcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  C  e.  V )
2624, 25syldan 457 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  C  e.  V )
27 ioombl 19416 . . . . . . 7  |-  ( A (,) B )  e. 
dom  vol
2827a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
29 ditgcl.i . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  C )  e.  L ^1 )
3023, 28, 25, 29iblss 19653 . . . . 5  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  C )  e.  L ^1 )
3126, 30itgcl 19632 . . . 4  |-  ( ph  ->  S. ( A (,) B ) C  _d x  e.  CC )
3231adantr 452 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  S. ( A (,) B ) C  _d x  e.  CC )
3314, 32eqeltrd 2482 . 2  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  B ] C  _d x  e.  CC )
34 simpr 448 . . . 4  |-  ( (
ph  /\  B  <_  A )  ->  B  <_  A )
3512adantr 452 . . . 4  |-  ( (
ph  /\  B  <_  A )  ->  B  e.  RR )
367adantr 452 . . . 4  |-  ( (
ph  /\  B  <_  A )  ->  A  e.  RR )
3734, 35, 36ditgneg 19701 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  S__ [ A  ->  B ] C  _d x  =  -u S. ( B (,) A ) C  _d x )
3811simp2d 970 . . . . . . . . . 10  |-  ( ph  ->  X  <_  B )
39 iooss1 10911 . . . . . . . . . 10  |-  ( ( X  e.  RR*  /\  X  <_  B )  ->  ( B (,) A )  C_  ( X (,) A ) )
4015, 38, 39syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( B (,) A
)  C_  ( X (,) A ) )
416simp3d 971 . . . . . . . . . 10  |-  ( ph  ->  A  <_  Y )
42 iooss2 10912 . . . . . . . . . 10  |-  ( ( Y  e.  RR*  /\  A  <_  Y )  ->  ( X (,) A )  C_  ( X (,) Y ) )
4319, 41, 42syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( X (,) A
)  C_  ( X (,) Y ) )
4440, 43sstrd 3322 . . . . . . . 8  |-  ( ph  ->  ( B (,) A
)  C_  ( X (,) Y ) )
4544sselda 3312 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B (,) A ) )  ->  x  e.  ( X (,) Y ) )
4645, 25syldan 457 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B (,) A ) )  ->  C  e.  V )
47 ioombl 19416 . . . . . . . 8  |-  ( B (,) A )  e. 
dom  vol
4847a1i 11 . . . . . . 7  |-  ( ph  ->  ( B (,) A
)  e.  dom  vol )
4944, 48, 25, 29iblss 19653 . . . . . 6  |-  ( ph  ->  ( x  e.  ( B (,) A ) 
|->  C )  e.  L ^1 )
5046, 49itgcl 19632 . . . . 5  |-  ( ph  ->  S. ( B (,) A ) C  _d x  e.  CC )
5150negcld 9358 . . . 4  |-  ( ph  -> 
-u S. ( B (,) A ) C  _d x  e.  CC )
5251adantr 452 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  -u S. ( B (,) A ) C  _d x  e.  CC )
5337, 52eqeltrd 2482 . 2  |-  ( (
ph  /\  B  <_  A )  ->  S__ [ A  ->  B ] C  _d x  e.  CC )
547, 12, 33, 53lecasei 9139 1  |-  ( ph  ->  S__ [ A  ->  B ] C  _d x  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1721    C_ wss 3284   class class class wbr 4176    e. cmpt 4230   dom cdm 4841  (class class class)co 6044   CCcc 8948   RRcr 8949   RR*cxr 9079    <_ cle 9081   -ucneg 9252   (,)cioo 10876   [,]cicc 10879   volcvol 19317   L ^1cibl 19466   S.citg 19467   S__cdit 19468
This theorem is referenced by:  ditgsplit  19705  itgsubstlem  19889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028  ax-addf 9029
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-disj 4147  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-of 6268  df-ofr 6269  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-map 6983  df-pm 6984  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-oi 7439  df-card 7786  df-cda 8008  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-n0 10182  df-z 10243  df-uz 10449  df-q 10535  df-rp 10573  df-xadd 10671  df-ioo 10880  df-ico 10882  df-icc 10883  df-fz 11004  df-fzo 11095  df-fl 11161  df-mod 11210  df-seq 11283  df-exp 11342  df-hash 11578  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-clim 12241  df-rlim 12242  df-sum 12439  df-xmet 16654  df-met 16655  df-ovol 19318  df-vol 19319  df-mbf 19469  df-itg1 19470  df-itg2 19471  df-ibl 19472  df-itg 19473  df-ditg 19474  df-0p 19519
  Copyright terms: Public domain W3C validator