MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgpos Unicode version

Theorem ditgpos 19206
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypothesis
Ref Expression
ditgpos.1  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
ditgpos  |-  ( ph  ->  S__ [ A  ->  B ] C  _d x  =  S. ( A (,) B ) C  _d x )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    C( x)

Proof of Theorem ditgpos
StepHypRef Expression
1 df-ditg 18980 . 2  |-  S__ [ A  ->  B ] C  _d x  =  if ( A  <_  B ,  S. ( A (,) B
) C  _d x ,  -u S. ( B (,) A ) C  _d x )
2 ditgpos.1 . . 3  |-  ( ph  ->  A  <_  B )
3 iftrue 3571 . . 3  |-  ( A  <_  B  ->  if ( A  <_  B ,  S. ( A (,) B
) C  _d x ,  -u S. ( B (,) A ) C  _d x )  =  S. ( A (,) B ) C  _d x )
42, 3syl 15 . 2  |-  ( ph  ->  if ( A  <_  B ,  S. ( A (,) B ) C  _d x ,  -u S. ( B (,) A
) C  _d x )  =  S. ( A (,) B ) C  _d x )
51, 4syl5eq 2327 1  |-  ( ph  ->  S__ [ A  ->  B ] C  _d x  =  S. ( A (,) B ) C  _d x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623   ifcif 3565   class class class wbr 4023  (class class class)co 5858    <_ cle 8868   -ucneg 9038   (,)cioo 10656   S.citg 18973   S__cdit 18974
This theorem is referenced by:  ditgcl  19208  ditgswap  19209  ditgsplitlem  19210  ftc2ditglem  19392  itgsubstlem  19395  itgsubst  19396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-if 3566  df-ditg 18980
  Copyright terms: Public domain W3C validator