MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem0 Unicode version

Theorem divalglem0 12868
Description: Lemma for divalg 12878. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1  |-  N  e.  ZZ
divalglem0.2  |-  D  e.  ZZ
Assertion
Ref Expression
divalglem0  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) ) ) )

Proof of Theorem divalglem0
StepHypRef Expression
1 divalglem0.2 . . . . . 6  |-  D  e.  ZZ
2 iddvds 12818 . . . . . . 7  |-  ( D  e.  ZZ  ->  D  ||  D )
3 dvdsabsb 12824 . . . . . . . 8  |-  ( ( D  e.  ZZ  /\  D  e.  ZZ )  ->  ( D  ||  D  <->  D 
||  ( abs `  D
) ) )
43anidms 627 . . . . . . 7  |-  ( D  e.  ZZ  ->  ( D  ||  D  <->  D  ||  ( abs `  D ) ) )
52, 4mpbid 202 . . . . . 6  |-  ( D  e.  ZZ  ->  D  ||  ( abs `  D
) )
61, 5ax-mp 8 . . . . 5  |-  D  ||  ( abs `  D )
7 nn0abscl 12072 . . . . . . . 8  |-  ( D  e.  ZZ  ->  ( abs `  D )  e. 
NN0 )
81, 7ax-mp 8 . . . . . . 7  |-  ( abs `  D )  e.  NN0
98nn0zi 10262 . . . . . 6  |-  ( abs `  D )  e.  ZZ
10 dvdsmultr2 12840 . . . . . 6  |-  ( ( D  e.  ZZ  /\  K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  ->  ( D  ||  ( abs `  D
)  ->  D  ||  ( K  x.  ( abs `  D ) ) ) )
111, 9, 10mp3an13 1270 . . . . 5  |-  ( K  e.  ZZ  ->  ( D  ||  ( abs `  D
)  ->  D  ||  ( K  x.  ( abs `  D ) ) ) )
126, 11mpi 17 . . . 4  |-  ( K  e.  ZZ  ->  D  ||  ( K  x.  ( abs `  D ) ) )
1312adantl 453 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  D  ||  ( K  x.  ( abs `  D
) ) )
14 divalglem0.1 . . . . 5  |-  N  e.  ZZ
15 zsubcl 10275 . . . . 5  |-  ( ( N  e.  ZZ  /\  R  e.  ZZ )  ->  ( N  -  R
)  e.  ZZ )
1614, 15mpan 652 . . . 4  |-  ( R  e.  ZZ  ->  ( N  -  R )  e.  ZZ )
17 zmulcl 10280 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( K  x.  ( abs `  D ) )  e.  ZZ )
189, 17mpan2 653 . . . 4  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  ZZ )
19 dvds2add 12836 . . . . 5  |-  ( ( D  e.  ZZ  /\  ( N  -  R
)  e.  ZZ  /\  ( K  x.  ( abs `  D ) )  e.  ZZ )  -> 
( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
201, 19mp3an1 1266 . . . 4  |-  ( ( ( N  -  R
)  e.  ZZ  /\  ( K  x.  ( abs `  D ) )  e.  ZZ )  -> 
( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
2116, 18, 20syl2an 464 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
2213, 21mpan2d 656 . 2  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) ) )
23 zcn 10243 . . . 4  |-  ( R  e.  ZZ  ->  R  e.  CC )
2418zcnd 10332 . . . 4  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  CC )
25 zcn 10243 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
2614, 25ax-mp 8 . . . . 5  |-  N  e.  CC
27 subsub 9287 . . . . 5  |-  ( ( N  e.  CC  /\  R  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  ->  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
2826, 27mp3an1 1266 . . . 4  |-  ( ( R  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  -> 
( N  -  ( R  -  ( K  x.  ( abs `  D
) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
2923, 24, 28syl2an 464 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  -  ( R  -  ( K  x.  ( abs `  D
) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
3029breq2d 4184 . 2  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) )  <->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
3122, 30sylibrd 226 1  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944    + caddc 8949    x. cmul 8951    - cmin 9247   NN0cn0 10177   ZZcz 10238   abscabs 11994    || cdivides 12807
This theorem is referenced by:  divalglem5  12872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808
  Copyright terms: Public domain W3C validator