MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem0 Structured version   Unicode version

Theorem divalglem0 12918
Description: Lemma for divalg 12928. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1  |-  N  e.  ZZ
divalglem0.2  |-  D  e.  ZZ
Assertion
Ref Expression
divalglem0  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) ) ) )

Proof of Theorem divalglem0
StepHypRef Expression
1 divalglem0.2 . . . . . 6  |-  D  e.  ZZ
2 iddvds 12868 . . . . . . 7  |-  ( D  e.  ZZ  ->  D  ||  D )
3 dvdsabsb 12874 . . . . . . . 8  |-  ( ( D  e.  ZZ  /\  D  e.  ZZ )  ->  ( D  ||  D  <->  D 
||  ( abs `  D
) ) )
43anidms 628 . . . . . . 7  |-  ( D  e.  ZZ  ->  ( D  ||  D  <->  D  ||  ( abs `  D ) ) )
52, 4mpbid 203 . . . . . 6  |-  ( D  e.  ZZ  ->  D  ||  ( abs `  D
) )
61, 5ax-mp 5 . . . . 5  |-  D  ||  ( abs `  D )
7 nn0abscl 12122 . . . . . . . 8  |-  ( D  e.  ZZ  ->  ( abs `  D )  e. 
NN0 )
81, 7ax-mp 5 . . . . . . 7  |-  ( abs `  D )  e.  NN0
98nn0zi 10311 . . . . . 6  |-  ( abs `  D )  e.  ZZ
10 dvdsmultr2 12890 . . . . . 6  |-  ( ( D  e.  ZZ  /\  K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  ->  ( D  ||  ( abs `  D
)  ->  D  ||  ( K  x.  ( abs `  D ) ) ) )
111, 9, 10mp3an13 1271 . . . . 5  |-  ( K  e.  ZZ  ->  ( D  ||  ( abs `  D
)  ->  D  ||  ( K  x.  ( abs `  D ) ) ) )
126, 11mpi 17 . . . 4  |-  ( K  e.  ZZ  ->  D  ||  ( K  x.  ( abs `  D ) ) )
1312adantl 454 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  D  ||  ( K  x.  ( abs `  D
) ) )
14 divalglem0.1 . . . . 5  |-  N  e.  ZZ
15 zsubcl 10324 . . . . 5  |-  ( ( N  e.  ZZ  /\  R  e.  ZZ )  ->  ( N  -  R
)  e.  ZZ )
1614, 15mpan 653 . . . 4  |-  ( R  e.  ZZ  ->  ( N  -  R )  e.  ZZ )
17 zmulcl 10329 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( K  x.  ( abs `  D ) )  e.  ZZ )
189, 17mpan2 654 . . . 4  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  ZZ )
19 dvds2add 12886 . . . . 5  |-  ( ( D  e.  ZZ  /\  ( N  -  R
)  e.  ZZ  /\  ( K  x.  ( abs `  D ) )  e.  ZZ )  -> 
( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
201, 19mp3an1 1267 . . . 4  |-  ( ( ( N  -  R
)  e.  ZZ  /\  ( K  x.  ( abs `  D ) )  e.  ZZ )  -> 
( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
2116, 18, 20syl2an 465 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( D  ||  ( N  -  R
)  /\  D  ||  ( K  x.  ( abs `  D ) ) )  ->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
2213, 21mpan2d 657 . 2  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) ) )
23 zcn 10292 . . . 4  |-  ( R  e.  ZZ  ->  R  e.  CC )
2418zcnd 10381 . . . 4  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  CC )
25 zcn 10292 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
2614, 25ax-mp 5 . . . . 5  |-  N  e.  CC
27 subsub 9336 . . . . 5  |-  ( ( N  e.  CC  /\  R  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  ->  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
2826, 27mp3an1 1267 . . . 4  |-  ( ( R  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  -> 
( N  -  ( R  -  ( K  x.  ( abs `  D
) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
2923, 24, 28syl2an 465 . . 3  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  -  ( R  -  ( K  x.  ( abs `  D
) ) ) )  =  ( ( N  -  R )  +  ( K  x.  ( abs `  D ) ) ) )
3029breq2d 4227 . 2  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) )  <->  D  ||  (
( N  -  R
)  +  ( K  x.  ( abs `  D
) ) ) ) )
3122, 30sylibrd 227 1  |-  ( ( R  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( K  x.  ( abs `  D ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   CCcc 8993    + caddc 8998    x. cmul 9000    - cmin 9296   NN0cn0 10226   ZZcz 10287   abscabs 12044    || cdivides 12857
This theorem is referenced by:  divalglem5  12922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-dvds 12858
  Copyright terms: Public domain W3C validator