MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem10 Unicode version

Theorem divalglem10 12617
Description: Lemma for divalg 12618. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1  |-  N  e.  ZZ
divalglem8.2  |-  D  e.  ZZ
divalglem8.3  |-  D  =/=  0
divalglem8.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem10  |-  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )
Distinct variable groups:    D, q,
r    N, q, r
Allowed substitution hints:    S( r, q)

Proof of Theorem divalglem10
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divalglem8.1 . . . 4  |-  N  e.  ZZ
2 divalglem8.2 . . . 4  |-  D  e.  ZZ
3 divalglem8.3 . . . 4  |-  D  =/=  0
4 divalglem8.4 . . . 4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
5 eqid 2296 . . . 4  |-  sup ( S ,  RR ,  `'  <  )  =  sup ( S ,  RR ,  `'  <  )
61, 2, 3, 4, 5divalglem9 12616 . . 3  |-  E! x  e.  S  x  <  ( abs `  D )
7 elnn0z 10052 . . . . . . . . . 10  |-  ( x  e.  NN0  <->  ( x  e.  ZZ  /\  0  <_  x ) )
87anbi2i 675 . . . . . . . . 9  |-  ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  <->  ( x  <  ( abs `  D
)  /\  ( x  e.  ZZ  /\  0  <_  x ) ) )
9 an12 772 . . . . . . . . . 10  |-  ( ( x  <  ( abs `  D )  /\  (
x  e.  ZZ  /\  0  <_  x ) )  <-> 
( x  e.  ZZ  /\  ( x  <  ( abs `  D )  /\  0  <_  x ) ) )
10 ancom 437 . . . . . . . . . . 11  |-  ( ( x  <  ( abs `  D )  /\  0  <_  x )  <->  ( 0  <_  x  /\  x  <  ( abs `  D
) ) )
1110anbi2i 675 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  ( x  <  ( abs `  D )  /\  0  <_  x ) )  <->  ( x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D
) ) ) )
129, 11bitri 240 . . . . . . . . 9  |-  ( ( x  <  ( abs `  D )  /\  (
x  e.  ZZ  /\  0  <_  x ) )  <-> 
( x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D ) ) ) )
138, 12bitri 240 . . . . . . . 8  |-  ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  <->  ( x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D
) ) ) )
1413anbi1i 676 . . . . . . 7  |-  ( ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) )  <->  ( (
x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D ) ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) )
15 anass 630 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D ) ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) )  <->  ( x  e.  ZZ  /\  ( ( 0  <_  x  /\  x  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) ) )
1614, 15bitri 240 . . . . . 6  |-  ( ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) )  <->  ( x  e.  ZZ  /\  ( ( 0  <_  x  /\  x  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) ) )
17 oveq2 5882 . . . . . . . . . . 11  |-  ( r  =  x  ->  (
( q  x.  D
)  +  r )  =  ( ( q  x.  D )  +  x ) )
1817eqeq2d 2307 . . . . . . . . . 10  |-  ( r  =  x  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  x
) ) )
1918rexbidv 2577 . . . . . . . . 9  |-  ( r  =  x  ->  ( E. q  e.  ZZ  N  =  ( (
q  x.  D )  +  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) )
201, 2, 3, 4divalglem4 12611 . . . . . . . . 9  |-  S  =  { r  e.  NN0  |  E. q  e.  ZZ  N  =  ( (
q  x.  D )  +  r ) }
2119, 20elrab2 2938 . . . . . . . 8  |-  ( x  e.  S  <->  ( x  e.  NN0  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) )
2221anbi2i 675 . . . . . . 7  |-  ( ( x  <  ( abs `  D )  /\  x  e.  S )  <->  ( x  <  ( abs `  D
)  /\  ( x  e.  NN0  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) ) )
23 ancom 437 . . . . . . 7  |-  ( ( x  e.  S  /\  x  <  ( abs `  D
) )  <->  ( x  <  ( abs `  D
)  /\  x  e.  S ) )
24 anass 630 . . . . . . 7  |-  ( ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) )  <->  ( x  <  ( abs `  D
)  /\  ( x  e.  NN0  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) ) )
2522, 23, 243bitr4i 268 . . . . . 6  |-  ( ( x  e.  S  /\  x  <  ( abs `  D
) )  <->  ( (
x  <  ( abs `  D )  /\  x  e.  NN0 )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) )
26 df-3an 936 . . . . . . . . 9  |-  ( ( 0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  ( (
0  <_  x  /\  x  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  x ) ) )
2726rexbii 2581 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  E. q  e.  ZZ  ( ( 0  <_  x  /\  x  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  x ) ) )
28 r19.42v 2707 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
( 0  <_  x  /\  x  <  ( abs `  D ) )  /\  N  =  ( (
q  x.  D )  +  x ) )  <-> 
( ( 0  <_  x  /\  x  <  ( abs `  D ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) )
2927, 28bitri 240 . . . . . . 7  |-  ( E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  ( (
0  <_  x  /\  x  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) )
3029anbi2i 675 . . . . . 6  |-  ( ( x  e.  ZZ  /\  E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) ) )  <->  ( x  e.  ZZ  /\  ( ( 0  <_  x  /\  x  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) ) )
3116, 25, 303bitr4i 268 . . . . 5  |-  ( ( x  e.  S  /\  x  <  ( abs `  D
) )  <->  ( x  e.  ZZ  /\  E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( (
q  x.  D )  +  x ) ) ) )
3231eubii 2165 . . . 4  |-  ( E! x ( x  e.  S  /\  x  < 
( abs `  D
) )  <->  E! x
( x  e.  ZZ  /\ 
E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  x ) ) ) )
33 df-reu 2563 . . . 4  |-  ( E! x  e.  S  x  <  ( abs `  D
)  <->  E! x ( x  e.  S  /\  x  <  ( abs `  D
) ) )
34 df-reu 2563 . . . 4  |-  ( E! x  e.  ZZ  E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  E! x
( x  e.  ZZ  /\ 
E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  x ) ) ) )
3532, 33, 343bitr4i 268 . . 3  |-  ( E! x  e.  S  x  <  ( abs `  D
)  <->  E! x  e.  ZZ  E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) ) )
366, 35mpbi 199 . 2  |-  E! x  e.  ZZ  E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( (
q  x.  D )  +  x ) )
37 breq2 4043 . . . . 5  |-  ( x  =  r  ->  (
0  <_  x  <->  0  <_  r ) )
38 breq1 4042 . . . . 5  |-  ( x  =  r  ->  (
x  <  ( abs `  D )  <->  r  <  ( abs `  D ) ) )
39 oveq2 5882 . . . . . 6  |-  ( x  =  r  ->  (
( q  x.  D
)  +  x )  =  ( ( q  x.  D )  +  r ) )
4039eqeq2d 2307 . . . . 5  |-  ( x  =  r  ->  ( N  =  ( (
q  x.  D )  +  x )  <->  N  =  ( ( q  x.  D )  +  r ) ) )
4137, 38, 403anbi123d 1252 . . . 4  |-  ( x  =  r  ->  (
( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  x ) )  <->  ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) ) )
4241rexbidv 2577 . . 3  |-  ( x  =  r  ->  ( E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  x ) )  <->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
4342cbvreuv 2779 . 2  |-  ( E! x  e.  ZZ  E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
4436, 43mpbi 199 1  |-  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E!weu 2156    =/= wne 2459   E.wrex 2557   E!wreu 2558   {crab 2560   class class class wbr 4039   `'ccnv 4704   ` cfv 5271  (class class class)co 5874   supcsup 7209   RRcr 8752   0cc0 8753    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   NN0cn0 9981   ZZcz 10040   abscabs 11735    || cdivides 12547
This theorem is referenced by:  divalg  12618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548
  Copyright terms: Public domain W3C validator