MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem5 Unicode version

Theorem divalglem5 12612
Description: Lemma for divalg 12618. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1  |-  N  e.  ZZ
divalglem0.2  |-  D  e.  ZZ
divalglem1.3  |-  D  =/=  0
divalglem2.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
divalglem5.5  |-  R  =  sup ( S ,  RR ,  `'  <  )
Assertion
Ref Expression
divalglem5  |-  ( 0  <_  R  /\  R  <  ( abs `  D
) )
Distinct variable groups:    D, r    N, r
Allowed substitution hints:    R( r)    S( r)

Proof of Theorem divalglem5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divalglem5.5 . . . . . 6  |-  R  =  sup ( S ,  RR ,  `'  <  )
2 divalglem0.1 . . . . . . 7  |-  N  e.  ZZ
3 divalglem0.2 . . . . . . 7  |-  D  e.  ZZ
4 divalglem1.3 . . . . . . 7  |-  D  =/=  0
5 divalglem2.4 . . . . . . 7  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
62, 3, 4, 5divalglem2 12610 . . . . . 6  |-  sup ( S ,  RR ,  `'  <  )  e.  S
71, 6eqeltri 2366 . . . . 5  |-  R  e.  S
8 oveq2 5882 . . . . . . 7  |-  ( x  =  R  ->  ( N  -  x )  =  ( N  -  R ) )
98breq2d 4051 . . . . . 6  |-  ( x  =  R  ->  ( D  ||  ( N  -  x )  <->  D  ||  ( N  -  R )
) )
10 oveq2 5882 . . . . . . . . 9  |-  ( r  =  x  ->  ( N  -  r )  =  ( N  -  x ) )
1110breq2d 4051 . . . . . . . 8  |-  ( r  =  x  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  x )
) )
1211cbvrabv 2800 . . . . . . 7  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  =  {
x  e.  NN0  |  D  ||  ( N  -  x ) }
135, 12eqtri 2316 . . . . . 6  |-  S  =  { x  e.  NN0  |  D  ||  ( N  -  x ) }
149, 13elrab2 2938 . . . . 5  |-  ( R  e.  S  <->  ( R  e.  NN0  /\  D  ||  ( N  -  R
) ) )
157, 14mpbi 199 . . . 4  |-  ( R  e.  NN0  /\  D  ||  ( N  -  R
) )
1615simpli 444 . . 3  |-  R  e. 
NN0
1716nn0ge0i 10009 . 2  |-  0  <_  R
18 nnabscl 11825 . . . . . . 7  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  -> 
( abs `  D
)  e.  NN )
193, 4, 18mp2an 653 . . . . . 6  |-  ( abs `  D )  e.  NN
2019nngt0i 9795 . . . . 5  |-  0  <  ( abs `  D
)
21 0re 8854 . . . . . 6  |-  0  e.  RR
22 zcn 10045 . . . . . . . 8  |-  ( D  e.  ZZ  ->  D  e.  CC )
233, 22ax-mp 8 . . . . . . 7  |-  D  e.  CC
2423abscli 11894 . . . . . 6  |-  ( abs `  D )  e.  RR
2521, 24ltnlei 8955 . . . . 5  |-  ( 0  <  ( abs `  D
)  <->  -.  ( abs `  D )  <_  0
)
2620, 25mpbi 199 . . . 4  |-  -.  ( abs `  D )  <_ 
0
27 ssrab2 3271 . . . . . . . . 9  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  C_  NN0
285, 27eqsstri 3221 . . . . . . . 8  |-  S  C_  NN0
29 nn0uz 10278 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
3028, 29sseqtri 3223 . . . . . . 7  |-  S  C_  ( ZZ>= `  0 )
31 nn0abscl 11813 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  ( abs `  D )  e. 
NN0 )
323, 31ax-mp 8 . . . . . . . . 9  |-  ( abs `  D )  e.  NN0
33 nn0sub2 10093 . . . . . . . . 9  |-  ( ( ( abs `  D
)  e.  NN0  /\  R  e.  NN0  /\  ( abs `  D )  <_  R )  ->  ( R  -  ( abs `  D ) )  e. 
NN0 )
3432, 16, 33mp3an12 1267 . . . . . . . 8  |-  ( ( abs `  D )  <_  R  ->  ( R  -  ( abs `  D ) )  e. 
NN0 )
3515a1i 10 . . . . . . . . 9  |-  ( ( abs `  D )  <_  R  ->  ( R  e.  NN0  /\  D  ||  ( N  -  R
) ) )
36 nn0z 10062 . . . . . . . . . . 11  |-  ( R  e.  NN0  ->  R  e.  ZZ )
37 1z 10069 . . . . . . . . . . . . 13  |-  1  e.  ZZ
382, 3divalglem0 12608 . . . . . . . . . . . . 13  |-  ( ( R  e.  ZZ  /\  1  e.  ZZ )  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( 1  x.  ( abs `  D ) ) ) ) ) )
3937, 38mpan2 652 . . . . . . . . . . . 12  |-  ( R  e.  ZZ  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( 1  x.  ( abs `  D
) ) ) ) ) )
4024recni 8865 . . . . . . . . . . . . . . . 16  |-  ( abs `  D )  e.  CC
4140mulid2i 8856 . . . . . . . . . . . . . . 15  |-  ( 1  x.  ( abs `  D
) )  =  ( abs `  D )
4241oveq2i 5885 . . . . . . . . . . . . . 14  |-  ( R  -  ( 1  x.  ( abs `  D
) ) )  =  ( R  -  ( abs `  D ) )
4342oveq2i 5885 . . . . . . . . . . . . 13  |-  ( N  -  ( R  -  ( 1  x.  ( abs `  D ) ) ) )  =  ( N  -  ( R  -  ( abs `  D
) ) )
4443breq2i 4047 . . . . . . . . . . . 12  |-  ( D 
||  ( N  -  ( R  -  (
1  x.  ( abs `  D ) ) ) )  <->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) )
4539, 44syl6ib 217 . . . . . . . . . . 11  |-  ( R  e.  ZZ  ->  ( D  ||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) ) )
4636, 45syl 15 . . . . . . . . . 10  |-  ( R  e.  NN0  ->  ( D 
||  ( N  -  R )  ->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) ) )
4746imp 418 . . . . . . . . 9  |-  ( ( R  e.  NN0  /\  D  ||  ( N  -  R ) )  ->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) )
4835, 47syl 15 . . . . . . . 8  |-  ( ( abs `  D )  <_  R  ->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) )
49 oveq2 5882 . . . . . . . . . 10  |-  ( x  =  ( R  -  ( abs `  D ) )  ->  ( N  -  x )  =  ( N  -  ( R  -  ( abs `  D
) ) ) )
5049breq2d 4051 . . . . . . . . 9  |-  ( x  =  ( R  -  ( abs `  D ) )  ->  ( D  ||  ( N  -  x
)  <->  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) ) )
5150, 13elrab2 2938 . . . . . . . 8  |-  ( ( R  -  ( abs `  D ) )  e.  S  <->  ( ( R  -  ( abs `  D
) )  e.  NN0  /\  D  ||  ( N  -  ( R  -  ( abs `  D ) ) ) ) )
5234, 48, 51sylanbrc 645 . . . . . . 7  |-  ( ( abs `  D )  <_  R  ->  ( R  -  ( abs `  D ) )  e.  S )
53 infmssuzle 10316 . . . . . . 7  |-  ( ( S  C_  ( ZZ>= ` 
0 )  /\  ( R  -  ( abs `  D ) )  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  ( R  -  ( abs `  D ) ) )
5430, 52, 53sylancr 644 . . . . . 6  |-  ( ( abs `  D )  <_  R  ->  sup ( S ,  RR ,  `'  <  )  <_  ( R  -  ( abs `  D ) ) )
551, 54syl5eqbr 4072 . . . . 5  |-  ( ( abs `  D )  <_  R  ->  R  <_  ( R  -  ( abs `  D ) ) )
5635simpld 445 . . . . . . . 8  |-  ( ( abs `  D )  <_  R  ->  R  e.  NN0 )
57 nn0re 9990 . . . . . . . 8  |-  ( R  e.  NN0  ->  R  e.  RR )
5856, 57syl 15 . . . . . . 7  |-  ( ( abs `  D )  <_  R  ->  R  e.  RR )
59 lesub 9269 . . . . . . . 8  |-  ( ( R  e.  RR  /\  R  e.  RR  /\  ( abs `  D )  e.  RR )  ->  ( R  <_  ( R  -  ( abs `  D ) )  <->  ( abs `  D
)  <_  ( R  -  R ) ) )
6024, 59mp3an3 1266 . . . . . . 7  |-  ( ( R  e.  RR  /\  R  e.  RR )  ->  ( R  <_  ( R  -  ( abs `  D ) )  <->  ( abs `  D )  <_  ( R  -  R )
) )
6158, 58, 60syl2anc 642 . . . . . 6  |-  ( ( abs `  D )  <_  R  ->  ( R  <_  ( R  -  ( abs `  D ) )  <->  ( abs `  D
)  <_  ( R  -  R ) ) )
6258recnd 8877 . . . . . . . 8  |-  ( ( abs `  D )  <_  R  ->  R  e.  CC )
6362subidd 9161 . . . . . . 7  |-  ( ( abs `  D )  <_  R  ->  ( R  -  R )  =  0 )
6463breq2d 4051 . . . . . 6  |-  ( ( abs `  D )  <_  R  ->  (
( abs `  D
)  <_  ( R  -  R )  <->  ( abs `  D )  <_  0
) )
6561, 64bitrd 244 . . . . 5  |-  ( ( abs `  D )  <_  R  ->  ( R  <_  ( R  -  ( abs `  D ) )  <->  ( abs `  D
)  <_  0 ) )
6655, 65mpbid 201 . . . 4  |-  ( ( abs `  D )  <_  R  ->  ( abs `  D )  <_ 
0 )
6726, 66mto 167 . . 3  |-  -.  ( abs `  D )  <_  R
6816, 57ax-mp 8 . . . 4  |-  R  e.  RR
6968, 24ltnlei 8955 . . 3  |-  ( R  <  ( abs `  D
)  <->  -.  ( abs `  D )  <_  R
)
7067, 69mpbir 200 . 2  |-  R  < 
( abs `  D
)
7117, 70pm3.2i 441 1  |-  ( 0  <_  R  /\  R  <  ( abs `  D
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   {crab 2560    C_ wss 3165   class class class wbr 4039   `'ccnv 4704   ` cfv 5271  (class class class)co 5874   supcsup 7209   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   NNcn 9762   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   abscabs 11735    || cdivides 12547
This theorem is referenced by:  divalglem9  12616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548
  Copyright terms: Public domain W3C validator