MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Structured version   Unicode version

Theorem divalglem8 12912
Description: Lemma for divalg 12915. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1  |-  N  e.  ZZ
divalglem8.2  |-  D  e.  ZZ
divalglem8.3  |-  D  =/=  0
divalglem8.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem8  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Distinct variable groups:    D, r    N, r
Allowed substitution hints:    S( r)    K( r)    X( r)    Y( r)

Proof of Theorem divalglem8
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
2 ssrab2 3420 . . . . . . . . . . . . 13  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  C_  NN0
31, 2eqsstri 3370 . . . . . . . . . . . 12  |-  S  C_  NN0
4 nn0sscn 10218 . . . . . . . . . . . 12  |-  NN0  C_  CC
53, 4sstri 3349 . . . . . . . . . . 11  |-  S  C_  CC
65sseli 3336 . . . . . . . . . 10  |-  ( Y  e.  S  ->  Y  e.  CC )
75sseli 3336 . . . . . . . . . 10  |-  ( X  e.  S  ->  X  e.  CC )
8 divalglem8.2 . . . . . . . . . . . . . 14  |-  D  e.  ZZ
9 divalglem8.3 . . . . . . . . . . . . . 14  |-  D  =/=  0
10 nnabscl 12121 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  -> 
( abs `  D
)  e.  NN )
118, 9, 10mp2an 654 . . . . . . . . . . . . 13  |-  ( abs `  D )  e.  NN
1211nnzi 10297 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  ZZ
13 zmulcl 10316 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( K  x.  ( abs `  D ) )  e.  ZZ )
1412, 13mpan2 653 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  ZZ )
1514zcnd 10368 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  CC )
16 subadd 9300 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  ->  (
( Y  -  X
)  =  ( K  x.  ( abs `  D
) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
176, 7, 15, 16syl3an 1226 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  X  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
18173com12 1157 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
19 eqcom 2437 . . . . . . . 8  |-  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( K  x.  ( abs `  D ) )  =  ( Y  -  X ) )
20 eqcom 2437 . . . . . . . 8  |-  ( ( X  +  ( K  x.  ( abs `  D
) ) )  =  Y  <->  Y  =  ( X  +  ( K  x.  ( abs `  D
) ) ) )
2118, 19, 203bitr3g 279 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
22213adant1r 1177 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
23223adant2r 1179 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
24 breq1 4207 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  <  ( abs `  D )  <->  Y  <  ( abs `  D ) ) )
25 eleq1 2495 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
2624, 25imbi12d 312 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
273sseli 3336 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  z  e.  NN0 )
28 elnn0z 10286 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN0  <->  ( z  e.  ZZ  /\  0  <_ 
z ) )
2927, 28sylib 189 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
z  e.  ZZ  /\  0  <_  z ) )
3029anim1i 552 . . . . . . . . . . . . . 14  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
( z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D ) ) )
31 df-3an 938 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) )  <->  ( (
z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D
) ) )
3230, 31sylibr 204 . . . . . . . . . . . . 13  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) )
33 0z 10285 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
34 elfzm11 11108 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <-> 
( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) ) )
3533, 12, 34mp2an 654 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0 ... ( ( abs `  D
)  -  1 ) )  <->  ( z  e.  ZZ  /\  0  <_ 
z  /\  z  <  ( abs `  D ) ) )
3632, 35sylibr 204 . . . . . . . . . . . 12  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
3736ex 424 . . . . . . . . . . 11  |-  ( z  e.  S  ->  (
z  <  ( abs `  D )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
3826, 37vtoclga 3009 . . . . . . . . . 10  |-  ( Y  e.  S  ->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
39 eleq1 2495 . . . . . . . . . . 11  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4039biimpd 199 . . . . . . . . . 10  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  ->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4138, 40sylan9 639 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) )  -> 
( Y  <  ( abs `  D )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
4241impancom 428 . . . . . . . 8  |-  ( ( Y  e.  S  /\  Y  <  ( abs `  D
) )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( X  +  ( K  x.  ( abs `  D
) ) )  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
43423ad2ant2 979 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
44 breq1 4207 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  <  ( abs `  D )  <->  X  <  ( abs `  D ) ) )
45 eleq1 2495 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4644, 45imbi12d 312 . . . . . . . . . . . 12  |-  ( z  =  X  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
4746, 37vtoclga 3009 . . . . . . . . . . 11  |-  ( X  e.  S  ->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4847imp 419 . . . . . . . . . 10  |-  ( ( X  e.  S  /\  X  <  ( abs `  D
) )  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
498, 9divalglem7 12911 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
5048, 49sylan 458 . . . . . . . . 9  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
51503adant2 976 . . . . . . . 8  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
5251con2d 109 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  ->  -.  K  =/=  0 ) )
5343, 52syld 42 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  -.  K  =/=  0
) )
54 df-ne 2600 . . . . . . 7  |-  ( K  =/=  0  <->  -.  K  =  0 )
5554con2bii 323 . . . . . 6  |-  ( K  =  0  <->  -.  K  =/=  0 )
5653, 55syl6ibr 219 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  K  =  0 ) )
5723, 56sylbid 207 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  K  =  0 ) )
58 oveq1 6080 . . . . . . . . . . 11  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  ( 0  x.  ( abs `  D ) ) )
5911nncni 10002 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  CC
6059mul02i 9247 . . . . . . . . . . 11  |-  ( 0  x.  ( abs `  D
) )  =  0
6158, 60syl6eq 2483 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  0 )
6261eqeq1d 2443 . . . . . . . . 9  |-  ( K  =  0  ->  (
( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  0  =  ( Y  -  X
) ) )
6362biimpac 473 . . . . . . . 8  |-  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  /\  K  =  0 )  -> 
0  =  ( Y  -  X ) )
64 subeq0 9319 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
656, 7, 64syl2anr 465 . . . . . . . . 9  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
66 eqcom 2437 . . . . . . . . 9  |-  ( ( Y  -  X )  =  0  <->  0  =  ( Y  -  X
) )
67 eqcom 2437 . . . . . . . . 9  |-  ( Y  =  X  <->  X  =  Y )
6865, 66, 673bitr3g 279 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( 0  =  ( Y  -  X )  <-> 
X  =  Y ) )
6963, 68syl5ib 211 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7069ad2ant2r 728 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  /\  K  = 
0 )  ->  X  =  Y ) )
71703adant3 977 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7271exp3a 426 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  -> 
( K  =  0  ->  X  =  Y ) ) )
7357, 72mpdd 38 . . 3  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y )
)
74733expia 1155 . 2  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  ->  X  =  Y ) ) )
7574an4s 800 1  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   {crab 2701   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283   NNcn 9992   NN0cn0 10213   ZZcz 10274   ...cfz 11035   abscabs 12031    || cdivides 12844
This theorem is referenced by:  divalglem9  12913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033
  Copyright terms: Public domain W3C validator