MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Unicode version

Theorem divalglem8 12599
Description: Lemma for divalg 12602. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1  |-  N  e.  ZZ
divalglem8.2  |-  D  e.  ZZ
divalglem8.3  |-  D  =/=  0
divalglem8.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem8  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Distinct variable groups:    D, r    N, r
Allowed substitution hints:    S( r)    K( r)    X( r)    Y( r)

Proof of Theorem divalglem8
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
2 ssrab2 3258 . . . . . . . . . . . . 13  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  C_  NN0
31, 2eqsstri 3208 . . . . . . . . . . . 12  |-  S  C_  NN0
4 nn0sscn 9970 . . . . . . . . . . . 12  |-  NN0  C_  CC
53, 4sstri 3188 . . . . . . . . . . 11  |-  S  C_  CC
65sseli 3176 . . . . . . . . . 10  |-  ( Y  e.  S  ->  Y  e.  CC )
75sseli 3176 . . . . . . . . . 10  |-  ( X  e.  S  ->  X  e.  CC )
8 divalglem8.2 . . . . . . . . . . . . . 14  |-  D  e.  ZZ
9 divalglem8.3 . . . . . . . . . . . . . 14  |-  D  =/=  0
10 nnabscl 11809 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  -> 
( abs `  D
)  e.  NN )
118, 9, 10mp2an 653 . . . . . . . . . . . . 13  |-  ( abs `  D )  e.  NN
1211nnzi 10047 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  ZZ
13 zmulcl 10066 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( K  x.  ( abs `  D ) )  e.  ZZ )
1412, 13mpan2 652 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  ZZ )
1514zcnd 10118 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  CC )
16 subadd 9054 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  ->  (
( Y  -  X
)  =  ( K  x.  ( abs `  D
) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
176, 7, 15, 16syl3an 1224 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  X  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
18173com12 1155 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
19 eqcom 2285 . . . . . . . 8  |-  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( K  x.  ( abs `  D ) )  =  ( Y  -  X ) )
20 eqcom 2285 . . . . . . . 8  |-  ( ( X  +  ( K  x.  ( abs `  D
) ) )  =  Y  <->  Y  =  ( X  +  ( K  x.  ( abs `  D
) ) ) )
2118, 19, 203bitr3g 278 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
22213adant1r 1175 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
23223adant2r 1177 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
24 breq1 4026 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  <  ( abs `  D )  <->  Y  <  ( abs `  D ) ) )
25 eleq1 2343 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
2624, 25imbi12d 311 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
273sseli 3176 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  z  e.  NN0 )
28 elnn0z 10036 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN0  <->  ( z  e.  ZZ  /\  0  <_ 
z ) )
2927, 28sylib 188 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
z  e.  ZZ  /\  0  <_  z ) )
3029anim1i 551 . . . . . . . . . . . . . 14  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
( z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D ) ) )
31 df-3an 936 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) )  <->  ( (
z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D
) ) )
3230, 31sylibr 203 . . . . . . . . . . . . 13  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) )
33 0z 10035 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
34 elfzm11 10853 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <-> 
( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) ) )
3533, 12, 34mp2an 653 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0 ... ( ( abs `  D
)  -  1 ) )  <->  ( z  e.  ZZ  /\  0  <_ 
z  /\  z  <  ( abs `  D ) ) )
3632, 35sylibr 203 . . . . . . . . . . . 12  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
3736ex 423 . . . . . . . . . . 11  |-  ( z  e.  S  ->  (
z  <  ( abs `  D )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
3826, 37vtoclga 2849 . . . . . . . . . 10  |-  ( Y  e.  S  ->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
39 eleq1 2343 . . . . . . . . . . 11  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4039biimpd 198 . . . . . . . . . 10  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  ->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4138, 40sylan9 638 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) )  -> 
( Y  <  ( abs `  D )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
4241impancom 427 . . . . . . . 8  |-  ( ( Y  e.  S  /\  Y  <  ( abs `  D
) )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( X  +  ( K  x.  ( abs `  D
) ) )  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
43423ad2ant2 977 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
44 breq1 4026 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  <  ( abs `  D )  <->  X  <  ( abs `  D ) ) )
45 eleq1 2343 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4644, 45imbi12d 311 . . . . . . . . . . . 12  |-  ( z  =  X  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
4746, 37vtoclga 2849 . . . . . . . . . . 11  |-  ( X  e.  S  ->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4847imp 418 . . . . . . . . . 10  |-  ( ( X  e.  S  /\  X  <  ( abs `  D
) )  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
498, 9divalglem7 12598 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
5048, 49sylan 457 . . . . . . . . 9  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
51503adant2 974 . . . . . . . 8  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
5251con2d 107 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  ->  -.  K  =/=  0 ) )
5343, 52syld 40 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  -.  K  =/=  0
) )
54 df-ne 2448 . . . . . . 7  |-  ( K  =/=  0  <->  -.  K  =  0 )
5554con2bii 322 . . . . . 6  |-  ( K  =  0  <->  -.  K  =/=  0 )
5653, 55syl6ibr 218 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  K  =  0 ) )
5723, 56sylbid 206 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  K  =  0 ) )
58 oveq1 5865 . . . . . . . . . . 11  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  ( 0  x.  ( abs `  D ) ) )
5911nncni 9756 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  CC
6059mul02i 9001 . . . . . . . . . . 11  |-  ( 0  x.  ( abs `  D
) )  =  0
6158, 60syl6eq 2331 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  0 )
6261eqeq1d 2291 . . . . . . . . 9  |-  ( K  =  0  ->  (
( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  0  =  ( Y  -  X
) ) )
6362biimpac 472 . . . . . . . 8  |-  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  /\  K  =  0 )  -> 
0  =  ( Y  -  X ) )
64 subeq0 9073 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
656, 7, 64syl2anr 464 . . . . . . . . 9  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
66 eqcom 2285 . . . . . . . . 9  |-  ( ( Y  -  X )  =  0  <->  0  =  ( Y  -  X
) )
67 eqcom 2285 . . . . . . . . 9  |-  ( Y  =  X  <->  X  =  Y )
6865, 66, 673bitr3g 278 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( 0  =  ( Y  -  X )  <-> 
X  =  Y ) )
6963, 68syl5ib 210 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7069ad2ant2r 727 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  /\  K  = 
0 )  ->  X  =  Y ) )
71703adant3 975 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7271exp3a 425 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  -> 
( K  =  0  ->  X  =  Y ) ) )
7357, 72mpdd 36 . . 3  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y )
)
74733expia 1153 . 2  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  ->  X  =  Y ) ) )
7574an4s 799 1  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   NN0cn0 9965   ZZcz 10024   ...cfz 10782   abscabs 11719    || cdivides 12531
This theorem is referenced by:  divalglem9  12600
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721
  Copyright terms: Public domain W3C validator