Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalgmod Structured version   Unicode version

Theorem divalgmod 12928
 Description: The result of the operator satisfies the requirements for the remainder in the division algorithm for a positive divisor (compare divalg2 12927 and divalgb 12926). This demonstration theorem justifies the use of to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgmod
Distinct variable groups:   ,   ,

Proof of Theorem divalgmod
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 zre 10288 . . . . . . . 8
2 nnrp 10623 . . . . . . . 8
3 modlt 11260 . . . . . . . 8
41, 2, 3syl2an 465 . . . . . . 7
5 nnre 10009 . . . . . . . . . . 11
6 nnne0 10034 . . . . . . . . . . 11
7 redivcl 9735 . . . . . . . . . . 11
81, 5, 6, 7syl3an 1227 . . . . . . . . . 10
983anidm23 1244 . . . . . . . . 9
109flcld 11209 . . . . . . . 8
11 nnz 10305 . . . . . . . . 9
1211adantl 454 . . . . . . . 8
13 zmodcl 11268 . . . . . . . . . 10
1413nn0zd 10375 . . . . . . . . 9
15 zsubcl 10321 . . . . . . . . 9
1614, 15syldan 458 . . . . . . . 8
17 nncn 10010 . . . . . . . . . . 11
1817adantl 454 . . . . . . . . . 10
1910zcnd 10378 . . . . . . . . . 10
2018, 19mulcomd 9111 . . . . . . . . 9
21 modval 11254 . . . . . . . . . . 11
221, 2, 21syl2an 465 . . . . . . . . . 10
23 zcn 10289 . . . . . . . . . . . . 13
2423adantr 453 . . . . . . . . . . . 12
25 zmulcl 10326 . . . . . . . . . . . . . . 15
2611, 10, 25syl2an 465 . . . . . . . . . . . . . 14
2726anabss7 796 . . . . . . . . . . . . 13
2827zcnd 10378 . . . . . . . . . . . 12
2913nn0cnd 10278 . . . . . . . . . . . 12
30 subsub23 9312 . . . . . . . . . . . 12
3124, 28, 29, 30syl3anc 1185 . . . . . . . . . . 11
32 eqcom 2440 . . . . . . . . . . 11
33 eqcom 2440 . . . . . . . . . . 11
3431, 32, 333bitr3g 280 . . . . . . . . . 10
3522, 34mpbid 203 . . . . . . . . 9
3620, 35eqtr3d 2472 . . . . . . . 8
37 dvds0lem 12862 . . . . . . . 8
3810, 12, 16, 36, 37syl31anc 1188 . . . . . . 7
39 divalg2 12927 . . . . . . . 8
40 breq1 4217 . . . . . . . . . 10
41 oveq2 6091 . . . . . . . . . . 11
4241breq2d 4226 . . . . . . . . . 10
4340, 42anbi12d 693 . . . . . . . . 9
4443riota2 6574 . . . . . . . 8
4513, 39, 44syl2anc 644 . . . . . . 7
464, 38, 45mpbi2and 889 . . . . . 6
4746eqcomd 2443 . . . . 5
4847sneqd 3829 . . . 4
49 snriota 6582 . . . . 5
5039, 49syl 16 . . . 4
5148, 50eqtr4d 2473 . . 3
5251eleq2d 2505 . 2
53 elsn 3831 . 2
54 breq1 4217 . . . 4
55 oveq2 6091 . . . . 5
5655breq2d 4226 . . . 4
5754, 56anbi12d 693 . . 3
5857elrab 3094 . 2
5952, 53, 583bitr3g 280 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wceq 1653   wcel 1726   wne 2601  wreu 2709  crab 2711  csn 3816   class class class wbr 4214  cfv 5456  (class class class)co 6083  crio 6544  cc 8990  cr 8991  cc0 8992   cmul 8997   clt 9122   cmin 9293   cdiv 9679  cn 10002  cn0 10223  cz 10284  crp 10614  cfl 11203   cmo 11252   cdivides 12854 This theorem is referenced by:  divalgmodcl  27060 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-fz 11046  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-dvds 12855
 Copyright terms: Public domain W3C validator